Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: How many integers between 1 and 10^21 [#permalink]
15 Oct 2010, 23:55

Pkit wrote:

How many integers between 1 and 10^21 (10 in 21st power) are such that the sum of their digits is 2?

a.190 b.210 c.211 d.230 e.231

Bunuel, please leave a chance for other people to solve this.

thanks

between 1 and 10^21 means we are talking about numbers with upto 21 digits.

Case 1 Numbers of the form 2,20,200,etc Possible numbers = 21 (1 possibility for each number of digits)

Case 2 Numbers using the digits {1,1} Such a number will have a minimum of 2 digits and a maximum of 21 digits, with the first digit=1. Now, consider the k-digit number, with the first digit "1", out of the rest of the k-1 digits, we have k-1 ways to choose where to put the second 1. So k-1, k-digit numbers possible. So total number of numbers = Summation(k-1;k=2 to k=21)=1+2+...+20=20(21)/2=210

Re: How many integers between 1 and 10^21 [#permalink]
16 Oct 2010, 02:15

so the second condition means there are 21 positions and two number, 1 and 1 so place in then. hence we can use the combination formula 21c11 and get 210.

Re: How many integers between 1 and 10^21 [#permalink]
16 Oct 2010, 04:33

Wow!! whenever I see these kinda questions I got stunned but guys like bunuel,shrouded1, and gurpreet are there to help . Nice method gurpreet and whenever a quant question is posted, shrouded1 is always there to explain it. Thank you! guys (I couldn't solve it but now i know how to solve it ) _________________

"Don't be afraid of the space between your dreams and reality. If you can dream it, you can make it so." Target=780 http://challengemba.blogspot.com Kudos??

How many integers between 1 and 10^21 are such that the sum [#permalink]
04 Dec 2012, 13:47

3

This post received KUDOS

Expert's post

How many integers between 1 and 10^21 are such that the sum of their digits is 2? (A) 190 (B) 210 (C) 211 (D) 230 (E) 231

For a complete explanation, see: http://gmat.magoosh.com/questions/835 When you submit your answer, the next page will have a complete video explanation. Each one of Magoosh's 800+ practice GMAT questions has its own video explanation, for accelerated learning. _________________

Re: How many integers between 1 and 10^21 are such that the sum [#permalink]
28 Dec 2012, 09:10

Combinations of digits that sum up to 2 are either 1+1 or 2+0:

Combinations 1+1:

Double Digits 11 Total: 1

Triple Digits 101 110 Total: 2

Quadruple Digits 1001 1010 1100 Total: 3

So now the pattern emerges that for every N digit number, there are N-1 combinations summing up to two. The number of integers should be between 1 and 10^21, exclusive which means that the largest allowed integer does only have 21 digits, not 22 which means that the amount combinations with the largest amount of places is 20 (21-1).

We can thus calculate the total amount of integers that satisfy the question by calculating the set of consecutive integers: 1+2+3...+20 which is 210. However, we did not account for the combinations of 2 and 0 that sum up to two, we have to add them first:

For my Cambridge essay I have to write down by short and long term career objectives as a part of the personal statement. Easy enough I said, done it...