Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: NS - Integers!! [#permalink]
14 Aug 2011, 11:42
2
This post received KUDOS
Take numbers between 101 and 199. Numbers that meet criteria 101,111,121,131,141,151,161,171,181,191. Total 10 number between 101 and 199 Similarly, 10 numbers between 200 and 300, 300 and 400, 400 and 500, 500 and 600, 600 and 700, 700 and 800 for total of 70 numbers.
OA C _________________
My dad once said to me: Son, nothing succeeds like success.
Re: NS - Integers!! [#permalink]
14 Aug 2011, 11:49
1
This post received KUDOS
+1 for C. This will be a 3 digit number and it remains same when reversing the digit. So it means 1st and 3rd digit are same. Number of options for 1st and 3rd digit = 7 (1 to 7 inclusive) Number of options for 2nd Digit = 10 (0, 1, to 9)
Total 7 x 10 x 1 = 70 (3rd Digit is already selected when the 1st is selected).
Re: NS - Integers!! [#permalink]
14 Aug 2011, 21:31
1
This post received KUDOS
another way to think of it is like this
I made it 100 just to simplify the below
100 < _ _ _ <= 800 which is the same as 101 <= _ _ _ <= 800
so you have a 3 digit number that must be a palindrome.
you have 7 ways to choose the first number (realize that you can't choose the number 8 because there are no palindromes <= 800) , you have 10 ways to choose the second number, but you only have 1 way to choose the 3rd number, because the third number HAS to be the 1st number
7*10*1 = 70
then 5 digit number you can do the following
10000 < _ _ _ _ _ <= 800000
again you have 7 * 10 * 10 = 700
** the other response was for 80008 so that would be another palindrome that's why that answer is 701
Re: NS - Integers!! [#permalink]
15 Aug 2011, 07:57
Spidy001 wrote:
question is asking for palindrome
first digit possibilities - 1 through 7 = 7
8 is not possible here because it would result in a number greater than 8 (i.e 808 , 818..)
second digit possibilities - 0 though 9 = 10
third digit is same as first digit
=>total possible number meeting the given conditions = 7 *10 = 70
Answer is C.
pinchharmonic wrote:
another way to think of it is like this
I made it 100 just to simplify the below
100 < _ _ _ <= 800 which is the same as 101 <= _ _ _ <= 800
so you have a 3 digit number that must be a palindrome.
you have 7 ways to choose the first number (realize that you can't choose the number 8 because there are no palindromes <= 800) , you have 10 ways to choose the second number, but you only have 1 way to choose the 3rd number, because the third number HAS to be the 1st number
7*10*1 = 70
then 5 digit number you can do the following
10000 < _ _ _ _ _ <= 800000
again you have 7 * 10 * 10 = 700
** the other response was for 80008 so that would be another palindrome that's why that answer is 701
Yups, I like the palindrome approach. Let us remove the unnecessary jargon and say this is a simple approach with little logic and common sense
so we have always 7 numbers vertically and 10 numbers horizontally. so 7*10 =70
actually the answ is predictable. from the beginning u know that u get a set of seven 3-digit numbers (111 ;222; 333 ;*** ;777). so u understand that ur answer choice should be divisible by 7. only 70 is divisible by 7 _________________
Happy are those who dream dreams and are ready to pay the price to make them come true
I am still on all gmat forums. msg me if you want to ask me smth
Re: How many integers from 101 to 800, inclusive, remains the [#permalink]
22 Feb 2013, 22:59
This is how I figured it out: The value will remain same only if all the digits are same OR if the first and the last digits are same. Hence between 101 - 800 : Total number of nos with same digits is 7 i.e. 111, 222, 333, 444, 555, 666, 777
Now for the first and the last digits as same.
since the range is between 101 - 800, Out of the 3 digits the first digit can ( or should ) be between 1 - 7 Total Number of ways in which 7 Numbers can be chosen is 7C1 = 7 ways. This chosen number is same as the 3 rd digit hence the number of ways to chose this same digit is 1 The Middle number can be between 0 - 9 ( exclusive of the number chosen as the first digit ) Therefore, total number of nos is 9: hence total number of ways to choose a number from 9 : 9C1 = 9
Therefore total number of digits is : 9 * 7 = 63 Total number of same 3 digits : 7 ==> 63 + 7 = 70
Re: How many integers from 101 to 800, inclusive, remains the [#permalink]
17 Aug 2014, 03:45
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: How many integers from 101 to 800, inclusive, remains the [#permalink]
07 Sep 2015, 20:05
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...