Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Oct 2014, 13:24

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many integers less than 1000 have no factors (other than

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 22 Jun 2010
Posts: 42
Followers: 0

Kudos [?]: 27 [0], given: 1

How many integers less than 1000 have no factors (other than [#permalink] New post 23 Aug 2010, 12:57
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

50% (02:18) correct 50% (01:56) wrong based on 144 sessions
How many integers less than 1000 have no factors (other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420
[Reveal] Spoiler: OA
Expert Post
5 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23398
Followers: 3611

Kudos [?]: 28840 [5] , given: 2854

Re: good one [#permalink] New post 23 Aug 2010, 13:17
5
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
mehdiov wrote:
How many integers less than 1000 have no factors(other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420


First of all it should be "how many positive integers less than 1000 have no factors (other than 1) in common with 1000", as if we consider negative integers answers will be: infinitely many.

1000=2^3*5 ^3 so basically we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5.

Multiples of 2 in the range 0-1000, not inclusive - \frac{998-2}{2}+1=499;
Multiples of 5 in the range 0-1000, not inclusive - \frac{995-5}{5}+1=199;
Multiples of both 2 and 5, so multiples of 10 - \frac{990-10}{10}+1=99.

Total # of positive integers less than 1000 is 999, so # integers which are not factors of 2 or 5 equals to 999-(499+199-99)=400.

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 30 Aug 2010
Posts: 92
Location: Bangalore, India
Followers: 3

Kudos [?]: 103 [0], given: 27

Re: good one [#permalink] New post 03 Sep 2010, 04:24
Bunuel,

Yes -- we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5 = which done not have 2/5 as a factor.

For this we can USE the VENN diagram technique as shown below

The integers <= 1000 divigible by 2 = 1000/2 = 500, but = 499 if 1000 is excluded
The integers <= 1000 divigible by 5 = 1000/5 = 200, but = 199 if 1000 is excluded
The integers <= 1000 divigible by 10(2*5) = 1000/10 = 100, but = 99 if 1000 is excluded


hence, integers that r divisible by 2only and 5only = 500+200-100 (or 499+199-99 if 1000 excluded)= 600 (599 if 1000 is excluded)

so the answer is 1000-600 (or 999 - 599) = 400.

am i correct.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23398
Followers: 3611

Kudos [?]: 28840 [0], given: 2854

Re: good one [#permalink] New post 03 Sep 2010, 04:40
Expert's post
muralimba wrote:
Bunuel,

Yes -- we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5 = which done not have 2/5 as a factor.

For this we can USE the VENN diagram technique as shown below

The integers <= 1000 divigible by 2 = 1000/2 = 500, but = 499 if 1000 is excluded
The integers <= 1000 divigible by 5 = 1000/5 = 200, but = 199 if 1000 is excluded
The integers <= 1000 divigible by 10(2*5) = 1000/10 = 100, but = 99 if 1000 is excluded


hence, integers that r divisible by 2only and 5only = 500+200-100 (or 499+199-99 if 1000 excluded)= 600 (599 if 1000 is excluded)

so the answer is 1000-600 (or 999 - 599) = 400.

am i correct.


Yes, it's correct. Basically the same way as used in my post.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 22 Jun 2010
Posts: 42
Followers: 0

Kudos [?]: 27 [0], given: 1

Re: good one [#permalink] New post 03 Sep 2010, 08:01
I agree the answers are basically the same
Director
Director
avatar
Joined: 23 Apr 2010
Posts: 583
Followers: 2

Kudos [?]: 26 [0], given: 7

Re: good one [#permalink] New post 11 Jan 2011, 01:55
Bunuel, why can't we simply divide 1000 by 2 to find the number of multiples of 2? My reasoning is that every second number is a multiple of 2 so there must be exactly 500 numbers.

Thanks.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23398
Followers: 3611

Kudos [?]: 28840 [0], given: 2854

Re: good one [#permalink] New post 11 Jan 2011, 02:03
Expert's post
nonameee wrote:
Bunuel, why can't we simply divide 1000 by 2 to find the number of multiples of 2? My reasoning is that every second number is a multiple of 2 so there must be exactly 500 numbers.

Thanks.


There are 100/2=500 multiple of 2 in the range 1-1000 INCLUSIVE. As we need numbers LESS than 1000 which are also multiples of 2 then we should subtract 1 from that number. So there are total of 500-1=499 multiples of 2 in the range 0-1000, not inclusive.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 23 Jul 2011
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: good one [#permalink] New post 23 Jul 2011, 05:27
Hi!
I have a book with this question and it says, that the correct answer 401...i see that there is no such answers in your questions...so i really confused..can somebody explain why it can be 401? or it is a 100% mistake?
Manager
Manager
avatar
Joined: 13 Oct 2012
Posts: 78
Concentration: General Management, Leadership
Schools: IE '15 (A)
GMAT 1: 760 Q49 V46
Followers: 1

Kudos [?]: -15 [0], given: 0

Re: How many integers less than 1000 have no factors (other than [#permalink] New post 07 Jan 2013, 11:18
The question asks for the number of integers less than 1000 and other than 1.
Isnt one included in the 400 integers that you are claimimg to be the answer?
Answer should be 399 if we exclude 1.
Please correct me in case i missed something.
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4877
Location: Pune, India
Followers: 1154

Kudos [?]: 5369 [1] , given: 165

Re: How many integers less than 1000 have no factors (other than [#permalink] New post 07 Jan 2013, 19:54
1
This post received
KUDOS
Expert's post
rohantiwari wrote:
The question asks for the number of integers less than 1000 and other than 1.
Isnt one included in the 400 integers that you are claimimg to be the answer?
Answer should be 399 if we exclude 1.
Please correct me in case i missed something.


The question does not ask you to exclude 1.

Every positive integer less than 1000 has one common factor with 1000. What is it? It is 1.
1 is a common factor between any two positive integers.

If the question were: How many positive integers less than 1000 have no factors in common with 1000 ?
Then the answer would be 0. There are no positive integers which have no common factors with 1000. All the positive integers have a common factor and that is 1. But the question wants to know the number of positive integers which have no common factor other than 1 (1 will always be a common factor). Basically, it is looking for positive integers which are co-prime with 1000.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 26 Feb 2013
Posts: 54
Concentration: Strategy, General Management
GMAT 1: 660 Q50 V30
WE: Consulting (Telecommunications)
Followers: 0

Kudos [?]: 4 [0], given: 16

Re: How many integers less than 1000 have no factors (other than [#permalink] New post 01 Apr 2013, 02:25
all odd numbers excluding odd multiples of 5 have only 1 as common factor with 1000.
hence 500 odd numbers-((995-5)/10)+1)= 400
Manager
Manager
User avatar
Joined: 07 May 2012
Posts: 76
Location: United States
Followers: 1

Kudos [?]: 45 [0], given: 23

Re: How many integers less than 1000 have no factors (other than [#permalink] New post 02 Apr 2013, 11:30
consider integers between 1 and 100 - half of them are even - hence 50 integers are multiples of 2 ( which also includes even multiples of 5) + 10 odd multiples of 5 = 60
Hence 40 integers that are not multiples of 2 and/or 5 -
hence considering integers between 1 and 1000 - there are 40*10 = 400 integers which do not have common multiple with 1000 other than 1.
_________________

Jyothi hosamani

Intern
Intern
avatar
Joined: 08 Jul 2012
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 99

Re: good one [#permalink] New post 03 Oct 2013, 13:09
Bunuel wrote:
mehdiov wrote:
How many integers less than 1000 have no factors(other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420


First of all it should be "how many positive integers less than 1000 have no factors (other than 1) in common with 1000", as if we consider negative integers answers will be: infinitely many.

1000=2^3*5 ^3 so basically we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5.

Multiples of 2 in the range 0-1000, not inclusive - \frac{998-2}{2}+1=499;
Multiples of 5 in the range 0-1000, not inclusive - \frac{995-5}{5}+1=199;
Multiples of both 2 and 5, so multiples of 10 - \frac{990-10}{10}+1=99.

Total # of positive integers less than 1000 is 999, so # integers which are not factors of 2 or 5 equals to 999-(499+199-99)=400.

Answer: A.




What about the prime numbers Bunuel ?? For ex : 7. Neither its a multiple of 2, nor 5 and it does not has any common factors with 1000 (except 1)
So, shouldn't the answer include prime numbers between 1-999 as well. And if YES, how do we calculate the number of primer numbers from 1-999 ???
Plz clarfily.

Thanks.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23398
Followers: 3611

Kudos [?]: 28840 [0], given: 2854

Re: good one [#permalink] New post 04 Oct 2013, 00:01
Expert's post
sumitchawla wrote:
Bunuel wrote:
mehdiov wrote:
How many integers less than 1000 have no factors (other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420


First of all it should be "how many positive integers less than 1000 have no factors (other than 1) in common with 1000", as if we consider negative integers answers will be: infinitely many.

1000=2^3*5 ^3 so basically we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5.

Multiples of 2 in the range 0-1000, not inclusive - \frac{998-2}{2}+1=499;
Multiples of 5 in the range 0-1000, not inclusive - \frac{995-5}{5}+1=199;
Multiples of both 2 and 5, so multiples of 10 - \frac{990-10}{10}+1=99.

Total # of positive integers less than 1000 is 999, so # integers which are not factors of 2 or 5 equals to 999-(499+199-99)=400.

Answer: A.




What about the prime numbers Bunuel ?? For ex : 7. Neither its a multiple of 2, nor 5 and it does not has any common factors with 1000 (except 1)
So, shouldn't the answer include prime numbers between 1-999 as well. And if YES, how do we calculate the number of primer numbers from 1-999 ???
Plz clarfily.

Thanks.


We counted multiples of 2 or 5 in the range 0-1000, not inclusive and then subtracted that from total number of integers in the range 0-1000. The number we get contains all numbers which are not multiples of 2 or 5, thus all primes (apart from 2 and 5) in that range too.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: good one   [#permalink] 04 Oct 2013, 00:01
    Similar topics Author Replies Last post
Similar
Topics:
2 Experts publish their posts in the topic How many natural number less than 200 will have 12 factors? abhishekkhosla 3 01 Aug 2013, 08:27
11 Experts publish their posts in the topic How many integers k greater than 100 and less than 1000 are vanidhar 15 17 Sep 2010, 04:39
11 Experts publish their posts in the topic How many integers less than 100 have exactly 4 odd factors b efet 19 17 Jul 2010, 10:53
How many positive integers less than 1000 are multiples of 5 kevincan 7 14 Apr 2007, 22:34
How many positive integers less than 1000 are multiples of 5 kevincan 3 09 Jul 2006, 01:16
Display posts from previous: Sort by

How many integers less than 1000 have no factors (other than

  Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.