Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 25 Oct 2016, 08:44

Happening Now:

Live Q&A with UCLA Adcom in Chat1  |  LBS/INSEAD/HECParis Chat will start at 9AM in Chat1

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many integers less than 1000 have no factors (other than

Author Message
TAGS:

Hide Tags

Intern
Joined: 22 Jun 2010
Posts: 42
Followers: 0

Kudos [?]: 99 [0], given: 1

How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

23 Aug 2010, 13:57
12
This post was
BOOKMARKED
00:00

Difficulty:

85% (hard)

Question Stats:

53% (02:32) correct 47% (01:56) wrong based on 270 sessions

HideShow timer Statistics

How many integers less than 1000 have no factors (other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420
[Reveal] Spoiler: OA
Math Expert
Joined: 02 Sep 2009
Posts: 35284
Followers: 6640

Kudos [?]: 85656 [6] , given: 10241

Show Tags

23 Aug 2010, 14:17
6
KUDOS
Expert's post
6
This post was
BOOKMARKED
mehdiov wrote:
How many integers less than 1000 have no factors(other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420

First of all it should be "how many positive integers less than 1000 have no factors (other than 1) in common with 1000", as if we consider negative integers answers will be: infinitely many.

$$1000=2^3*5 ^3$$ so basically we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5.

Multiples of 2 in the range 0-1000, not inclusive - $$\frac{998-2}{2}+1=499$$;
Multiples of 5 in the range 0-1000, not inclusive - $$\frac{995-5}{5}+1=199$$;
Multiples of both 2 and 5, so multiples of 10 - $$\frac{990-10}{10}+1=99$$.

Total # of positive integers less than 1000 is 999, so # integers which are not factors of 2 or 5 equals to $$999-(499+199-99)=400$$.

_________________
Manager
Joined: 30 Aug 2010
Posts: 91
Location: Bangalore, India
Followers: 5

Kudos [?]: 155 [0], given: 27

Show Tags

03 Sep 2010, 05:24
Bunuel,

Yes -- we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5 = which done not have 2/5 as a factor.

For this we can USE the VENN diagram technique as shown below

The integers <= 1000 divigible by 2 = 1000/2 = 500, but = 499 if 1000 is excluded
The integers <= 1000 divigible by 5 = 1000/5 = 200, but = 199 if 1000 is excluded
The integers <= 1000 divigible by 10(2*5) = 1000/10 = 100, but = 99 if 1000 is excluded

hence, integers that r divisible by 2only and 5only = 500+200-100 (or 499+199-99 if 1000 excluded)= 600 (599 if 1000 is excluded)

so the answer is 1000-600 (or 999 - 599) = 400.

am i correct.
Math Expert
Joined: 02 Sep 2009
Posts: 35284
Followers: 6640

Kudos [?]: 85656 [0], given: 10241

Show Tags

03 Sep 2010, 05:40
muralimba wrote:
Bunuel,

Yes -- we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5 = which done not have 2/5 as a factor.

For this we can USE the VENN diagram technique as shown below

The integers <= 1000 divigible by 2 = 1000/2 = 500, but = 499 if 1000 is excluded
The integers <= 1000 divigible by 5 = 1000/5 = 200, but = 199 if 1000 is excluded
The integers <= 1000 divigible by 10(2*5) = 1000/10 = 100, but = 99 if 1000 is excluded

hence, integers that r divisible by 2only and 5only = 500+200-100 (or 499+199-99 if 1000 excluded)= 600 (599 if 1000 is excluded)

so the answer is 1000-600 (or 999 - 599) = 400.

am i correct.

Yes, it's correct. Basically the same way as used in my post.
_________________
Intern
Joined: 22 Jun 2010
Posts: 42
Followers: 0

Kudos [?]: 99 [0], given: 1

Show Tags

03 Sep 2010, 09:01
I agree the answers are basically the same
Director
Joined: 23 Apr 2010
Posts: 584
Followers: 2

Kudos [?]: 72 [0], given: 7

Show Tags

11 Jan 2011, 02:55
Bunuel, why can't we simply divide 1000 by 2 to find the number of multiples of 2? My reasoning is that every second number is a multiple of 2 so there must be exactly 500 numbers.

Thanks.
Math Expert
Joined: 02 Sep 2009
Posts: 35284
Followers: 6640

Kudos [?]: 85656 [0], given: 10241

Show Tags

11 Jan 2011, 03:03
nonameee wrote:
Bunuel, why can't we simply divide 1000 by 2 to find the number of multiples of 2? My reasoning is that every second number is a multiple of 2 so there must be exactly 500 numbers.

Thanks.

There are 100/2=500 multiple of 2 in the range 1-1000 INCLUSIVE. As we need numbers LESS than 1000 which are also multiples of 2 then we should subtract 1 from that number. So there are total of 500-1=499 multiples of 2 in the range 0-1000, not inclusive.
_________________
Intern
Joined: 23 Jul 2011
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Show Tags

23 Jul 2011, 06:27
Hi!
I have a book with this question and it says, that the correct answer 401...i see that there is no such answers in your questions...so i really confused..can somebody explain why it can be 401? or it is a 100% mistake?
Manager
Joined: 13 Oct 2012
Posts: 78
Schools: IE '15 (A)
GMAT 1: 760 Q49 V46
Followers: 1

Kudos [?]: -12 [0], given: 0

Re: How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

07 Jan 2013, 12:18
The question asks for the number of integers less than 1000 and other than 1.
Isnt one included in the 400 integers that you are claimimg to be the answer?
Answer should be 399 if we exclude 1.
Please correct me in case i missed something.
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 6971
Location: Pune, India
Followers: 2028

Kudos [?]: 12754 [1] , given: 221

Re: How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

07 Jan 2013, 20:54
1
KUDOS
Expert's post
1
This post was
BOOKMARKED
rohantiwari wrote:
The question asks for the number of integers less than 1000 and other than 1.
Isnt one included in the 400 integers that you are claimimg to be the answer?
Answer should be 399 if we exclude 1.
Please correct me in case i missed something.

The question does not ask you to exclude 1.

Every positive integer less than 1000 has one common factor with 1000. What is it? It is 1.
1 is a common factor between any two positive integers.

If the question were: How many positive integers less than 1000 have no factors in common with 1000 ?
Then the answer would be 0. There are no positive integers which have no common factors with 1000. All the positive integers have a common factor and that is 1. But the question wants to know the number of positive integers which have no common factor other than 1 (1 will always be a common factor). Basically, it is looking for positive integers which are co-prime with 1000.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for \$199

Veritas Prep Reviews

Manager
Joined: 26 Feb 2013
Posts: 53
Concentration: Strategy, General Management
GMAT 1: 660 Q50 V30
WE: Consulting (Telecommunications)
Followers: 1

Kudos [?]: 12 [0], given: 16

Re: How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

01 Apr 2013, 03:25
all odd numbers excluding odd multiples of 5 have only 1 as common factor with 1000.
hence 500 odd numbers-((995-5)/10)+1)= 400
Manager
Joined: 07 May 2012
Posts: 76
Location: United States
Followers: 3

Kudos [?]: 128 [0], given: 23

Re: How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

02 Apr 2013, 12:30
consider integers between 1 and 100 - half of them are even - hence 50 integers are multiples of 2 ( which also includes even multiples of 5) + 10 odd multiples of 5 = 60
Hence 40 integers that are not multiples of 2 and/or 5 -
hence considering integers between 1 and 1000 - there are 40*10 = 400 integers which do not have common multiple with 1000 other than 1.
_________________

Jyothi hosamani

Intern
Joined: 08 Jul 2012
Posts: 4
Followers: 0

Kudos [?]: 1 [0], given: 99

Show Tags

03 Oct 2013, 14:09
Bunuel wrote:
mehdiov wrote:
How many integers less than 1000 have no factors(other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420

First of all it should be "how many positive integers less than 1000 have no factors (other than 1) in common with 1000", as if we consider negative integers answers will be: infinitely many.

$$1000=2^3*5 ^3$$ so basically we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5.

Multiples of 2 in the range 0-1000, not inclusive - $$\frac{998-2}{2}+1=499$$;
Multiples of 5 in the range 0-1000, not inclusive - $$\frac{995-5}{5}+1=199$$;
Multiples of both 2 and 5, so multiples of 10 - $$\frac{990-10}{10}+1=99$$.

Total # of positive integers less than 1000 is 999, so # integers which are not factors of 2 or 5 equals to $$999-(499+199-99)=400$$.

What about the prime numbers Bunuel ?? For ex : 7. Neither its a multiple of 2, nor 5 and it does not has any common factors with 1000 (except 1)
So, shouldn't the answer include prime numbers between 1-999 as well. And if YES, how do we calculate the number of primer numbers from 1-999 ???
Plz clarfily.

Thanks.
Math Expert
Joined: 02 Sep 2009
Posts: 35284
Followers: 6640

Kudos [?]: 85656 [0], given: 10241

Show Tags

04 Oct 2013, 01:01
sumitchawla wrote:
Bunuel wrote:
mehdiov wrote:
How many integers less than 1000 have no factors (other than 1) in common with 1000 ?

a. 400
b. 399
c. 410
d. 420

First of all it should be "how many positive integers less than 1000 have no factors (other than 1) in common with 1000", as if we consider negative integers answers will be: infinitely many.

$$1000=2^3*5 ^3$$ so basically we are asked to calculate the # of positive integrs less than 1000, which are not multiples of 2 or/and 5.

Multiples of 2 in the range 0-1000, not inclusive - $$\frac{998-2}{2}+1=499$$;
Multiples of 5 in the range 0-1000, not inclusive - $$\frac{995-5}{5}+1=199$$;
Multiples of both 2 and 5, so multiples of 10 - $$\frac{990-10}{10}+1=99$$.

Total # of positive integers less than 1000 is 999, so # integers which are not factors of 2 or 5 equals to $$999-(499+199-99)=400$$.

What about the prime numbers Bunuel ?? For ex : 7. Neither its a multiple of 2, nor 5 and it does not has any common factors with 1000 (except 1)
So, shouldn't the answer include prime numbers between 1-999 as well. And if YES, how do we calculate the number of primer numbers from 1-999 ???
Plz clarfily.

Thanks.

We counted multiples of 2 or 5 in the range 0-1000, not inclusive and then subtracted that from total number of integers in the range 0-1000. The number we get contains all numbers which are not multiples of 2 or 5, thus all primes (apart from 2 and 5) in that range too.

Hope it's clear.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 12220
Followers: 542

Kudos [?]: 151 [0], given: 0

Re: How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

28 Oct 2014, 13:18
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 12220
Followers: 542

Kudos [?]: 151 [0], given: 0

Re: How many integers less than 1000 have no factors (other than [#permalink]

Show Tags

16 Dec 2015, 05:49
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: How many integers less than 1000 have no factors (other than   [#permalink] 16 Dec 2015, 05:49
Similar topics Replies Last post
Similar
Topics:
7 How many natural number less than 200 will have 12 factors? 10 01 Aug 2013, 09:27
14 How many integers k greater than 100 and less than 1000 are 16 17 Sep 2010, 05:39
37 How many integers less than 100 have exactly 4 odd factors b 21 17 Jul 2010, 11:53
1 How many positive integers less than 100 have a remainder of 10 21 Sep 2009, 21:42
42 How many positive integers less than 1000 are multiples of 5 16 14 Apr 2007, 23:34
Display posts from previous: Sort by