Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Oct 2014, 23:13

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many numbers that are not divisible by 6 divide evenly

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
2 KUDOS received
Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 522 [2] , given: 217

How many numbers that are not divisible by 6 divide evenly [#permalink] New post 28 Jan 2012, 00:09
2
This post received
KUDOS
10
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

25% (03:12) correct 75% (02:17) wrong based on 438 sessions
How many numbers that are not divisible by 6 divide evenly into 264,600?

(A) 9
(B) 36
(C) 51
(D) 63
(E) 72
[Reveal] Spoiler: OA

_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(


Last edited by Bunuel on 23 Jul 2013, 01:01, edited 2 times in total.
Added the OA
Expert Post
9 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23357
Followers: 3605

Kudos [?]: 28739 [9] , given: 2839

Re: Numbers divisible by 6 [#permalink] New post 28 Jan 2012, 01:08
9
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
enigma123 wrote:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

Any idea how to solve this please?

Finding the Number of Factors of an Integer

First make prime factorization of an integer n=a^p*b^q*c^r, where a, b, and c are prime factors of n and p, q, and r are their powers.

The number of factors of n will be expressed by the formula (p+1)(q+1)(r+1). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: 450=2^1*3^2*5^2

Total number of factors of 450 including 1 and 450 itself is (1+1)*(2+1)*(2+1)=2*3*3=18 factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

264,600=2^3*3^3*5^2*7^2, thus it has total of (3+1)(3+1)(2+1)(2+1)=144 differernt positive factors, including 1 and the number itself.

# of factors that ARE divisible by 6 will be 3*3*(2+1)(2+1)=81: we are not adding 1 to the powers of 2 and 3, this time, to exclude all the cases with 2^0*... and 3^0*... (thus to exclude all the factors which are not divisible by 2 or 3), hence ensuring that at least one 2 and at least one 3 are present to get at least one 6 in the factors we are counting.

So, # of factors that ARE NOT divisible by 6 is 144-81=63.

Answer: D.

Another solution here: new-set-of-good-ps-85440.html#p642384

Hope now it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 522 [0], given: 217

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 28 Jan 2012, 14:59
Thanks Bunuel - but in the solution that's there in the link which is presented by Atish, I am struggling to understand why he did

Now if we add the two numbers above we end up double counting the factors of 5^2*7^2 = (2+1)*(2+1) = 9

Can you please explain?
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(

Expert Post
7 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23357
Followers: 3605

Kudos [?]: 28739 [7] , given: 2839

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 28 Jan 2012, 15:22
7
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
enigma123 wrote:
Thanks Bunuel - but in the solution that's there in the link which is presented by Atish, I am struggling to understand why he did

Now if we add the two numbers above we end up double counting the factors of 5^2*7^2 = (2+1)*(2+1) = 9

Can you please explain?


This part is from another approach (direct counting), which is in my solution there too. Maybe it will answer your question:

How many numbers that are not divisible by 6 divide evenly into 264,600?

264,600=2^3*3^3*5^2*7^2

We should find the factor which contain no 2 and 3 together, so not to be divisible by 6.

Clearly, the factors which contain only 2, 5, 7 and 3, 5, 7 won't be divisible by 6. So how many such factors are there?
2^3*5^2*7^2 --> (3+1)*(2+1)*(2+1)=36;

3^3*5^2*7^2 --> (3+1)*(2+1)*(2+1)=36;

36+36=72.

Here comes the part you have a problem with. This number (72) contains duplicates, (some factors which are not divisible by 6 are counted twice): both 36'es count the factors which have ONLY 5's and/or 7's. (5*7=35, 5*7^2=245, 5^2*7=175, 5*7^0=5, 5^0*7=7....), so basically factors of 5^2*7^2 are counted twice.
How, many such factors does 5^2*7^2 have? (2+1)*(2+1)=9.

So we should subtract this 9 duplicated factors from 72 --> 72-9=63.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 562
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 522 [0], given: 217

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 28 Jan 2012, 15:29
Perfect and many thanks.
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(

Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 108
Followers: 1

Kudos [?]: 10 [0], given: 28

Re: Numbers divisible by 6 [#permalink] New post 15 Sep 2012, 13:36
Bunuel wrote:
enigma123 wrote:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

Any idea how to solve this please?

Finding the Number of Factors of an Integer

First make prime factorization of an integer n=a^p*b^q*c^r, where a, b, and c are prime factors of n and p, q, and r are their powers.

The number of factors of n will be expressed by the formula (p+1)(q+1)(r+1). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: 450=2^1*3^2*5^2

Total number of factors of 450 including 1 and 450 itself is (1+1)*(2+1)*(2+1)=2*3*3=18 factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

264,600=2^3*3^3*5^2*7^2, thus it has total of (3+1)(3+1)(2+1)(2+1)=144 differernt positive factors, including 1 and the number itself.

# of factors that ARE divisible by 6 will be 3*3*(2+1)(2+1)=81: we are not adding 1 to the powers of 2 and 3, this time, to exclude all the cases with 2^0*... and 3^0*... (thus to exclude all the factors which are not divisible by 2 or 3), hence ensuring that at least one 2 and at least one 3 are present to get at least one 6 in the factors we are counting.

So, # of factors that ARE NOT divisible by 6 is 144-81=63.

Answer: D.

Another solution here: new-set-of-good-ps-85440.html#p642384

Hope now it's clear.


Hey Bunuel,

So if I was interested in knowing the number of factors 264,600=2^3*3^3*5^2*7^2 that are divisible by 35=5*7

Answer: (3+1)(3+1)(2)(2)=64 Your saying I shouldn't add 1 to powers the primes 5 and 7?

How about how many factors of 264,600=2^3*3^3*5^2*7^2 are divisible by 3675=3*(5^2)*(7^2)?

Would it be (3+1)(3)(2)(2)=48?
1 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 613
WE: Science (Education)
Followers: 73

Kudos [?]: 529 [1] , given: 43

Re: Numbers divisible by 6 [#permalink] New post 15 Sep 2012, 15:23
1
This post received
KUDOS
alphabeta1234 wrote:
Bunuel wrote:
enigma123 wrote:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

Any idea how to solve this please?

Finding the Number of Factors of an Integer

First make prime factorization of an integer n=a^p*b^q*c^r, where a, b, and c are prime factors of n and p, q, and r are their powers.

The number of factors of n will be expressed by the formula (p+1)(q+1)(r+1). NOTE: this will include 1 and n itself.

Example: Finding the number of all factors of 450: 450=2^1*3^2*5^2

Total number of factors of 450 including 1 and 450 itself is (1+1)*(2+1)*(2+1)=2*3*3=18 factors.
For more on number properties check: math-number-theory-88376.html

BACK TO THE ORIGINAL QUESTION:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

264,600=2^3*3^3*5^2*7^2, thus it has total of (3+1)(3+1)(2+1)(2+1)=144 differernt positive factors, including 1 and the number itself.

# of factors that ARE divisible by 6 will be 3*3*(2+1)(2+1)=81: we are not adding 1 to the powers of 2 and 3, this time, to exclude all the cases with 2^0*... and 3^0*... (thus to exclude all the factors which are not divisible by 2 or 3), hence ensuring that at least one 2 and at least one 3 are present to get at least one 6 in the factors we are counting.

So, # of factors that ARE NOT divisible by 6 is 144-81=63.

Answer: D.

Another solution here: new-set-of-good-ps-85440.html#p642384

Hope now it's clear.


Hey Bunuel,

So if I was interested in knowing the number of factors 264,600=2^3*3^3*5^2*7^2 that are divisible by 35=5*7

Answer: (3+1)(3+1)(2)(2)=64 Your saying I shouldn't add 1 to powers the primes 5 and 7?

How about how many factors of 264,600=2^3*3^3*5^2*7^2 are divisible by 3675=3*(5^2)*(7^2)?

Would it be (3+1)(3)(2)(2)=48?


NO.
It should be (3+1)(3)(1)(1)=12.
2 can be at any power between 0 and 3;
3 can be at any power between 1 and 3 - we need at least a factor of 3;
5 and 7 are already at power 2 in 3675, so just one choice for each.

You have to ensure that you have each prime factor of 3675 at least at the power it shows in the factorization of 3675, but not greater than the power of that factor in the decomposition of 264,600.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

1 KUDOS received
Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 108
Followers: 1

Kudos [?]: 10 [1] , given: 28

Re: Numbers divisible by 6 [#permalink] New post 15 Sep 2012, 16:19
1
This post received
KUDOS
NO.
It should be (3+1)(3)(1)(1)=12.
2 can be at any power between 0 and 3;
3 can be at any power between 1 and 3 - we need at least a factor of 3;
5 and 7 are already at power 2 in 3675, so just one choice for each.

You have to ensure that you have each prime factor of 3675 at least at the power it shows in the factorization of 3675, but not greater than the power of that factor in the decomposition of 264,600.[/quote]

EvaJager,

Correct me if I am wrong but is this the method your using: How many factors of 264,600=2^3*3^3*5^2*7^2 are divisible by 3675=3*(5^2)*(7^2)?

You are essentially: 264,600/3675=(2^3*3^3*5^2*7^2)/(3*5^2*7^2)=2^3*3^2*5^0*7^0. Now we find the number of factors of 2^3*3^2*5^0*7^0 which is (3+1)(2+1)(0+1)(0+1). Do I have your method down correctly? Is this what your doing in your head??
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 613
WE: Science (Education)
Followers: 73

Kudos [?]: 529 [0], given: 43

Re: Numbers divisible by 6 [#permalink] New post 15 Sep 2012, 23:24
alphabeta1234 wrote:
NO.
It should be (3+1)(3)(1)(1)=12.
2 can be at any power between 0 and 3;
3 can be at any power between 1 and 3 - we need at least a factor of 3;
5 and 7 are already at power 2 in 3675, so just one choice for each.

You have to ensure that you have each prime factor of 3675 at least at the power it shows in the factorization of 3675, but not greater than the power of that factor in the decomposition of 264,600.


EvaJager,

Correct me if I am wrong but is this the method your using: How many factors of 264,600=2^3*3^3*5^2*7^2 are divisible by 3675=3*(5^2)*(7^2)?

You are essentially: 264,600/3675=(2^3*3^3*5^2*7^2)/(3*5^2*7^2)=2^3*3^2*5^0*7^0. Now we find the number of factors of 2^3*3^2*5^0*7^0 which is (3+1)(2+1)(0+1)(0+1). Do I have your method down correctly? Is this what your doing in your head??

Yes, exactly!
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

3 KUDOS received
Manager
Manager
User avatar
Joined: 07 May 2012
Posts: 76
Location: United States
Followers: 1

Kudos [?]: 45 [3] , given: 23

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 09 May 2013, 09:31
3
This post received
KUDOS
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72



264600 = (2^3) * (3^3) * (5^2) * (7^2)

Numbers not divisible by 6 ----->(factors that are not multiples of 3) + (factors that are not multiples of 2) - (factors that are multiples of neither 2 nor 3)
( number of factors of 2^3 * 5^2 *7^2 ) + ( number of factors of 3^3 * 5^2 *7^2 ) - ( number of factors of 5^2 *7^2 )
= [(3+1)(2+1)(2+1)] + [(3+1)(2+1)(2+1)] - (2+1)(2+1)]
=36 + 36 -9 = 63
Note : (Subtract number of factors of 5^2 *7^2 , because you have counted them twice .)


HTH
-Jyothi
_________________

Jyothi hosamani

Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 108
Followers: 1

Kudos [?]: 10 [0], given: 28

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 21 Jul 2013, 13:57
gmacforjyoab wrote:
How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72



264600 = (2^3) * (3^3) * (5^2) * (7^2)

Numbers not divisible by 6 ----->(factors that are not multiples of 3) + (factors that are not multiples of 2) - (factors that are multiples of neither 2 nor 3)
( number of factors of 2^3 * 5^2 *7^2 ) + ( number of factors of 3^3 * 5^2 *7^2 ) - ( number of factors of 5^2 *7^2 )
= [(3+1)(2+1)(2+1)] + [(3+1)(2+1)(2+1)] - (2+1)(2+1)]
=36 + 36 -9 = 63
Note : (Subtract number of factors of 5^2 *7^2 , because you have counted them twice .)


HTH
-Jyothi


Not divisible by 6 is to say not divisible by (2n3 = 2 and 3)

Why does ~(2n3)=~(2)+~(3)-~(2u3). Where does this expression come from?

Can I say ~(AnB)=(~A)+(~B)-~(AuB).

Because I have always dealt with not statments "~" such that ~(AnB)=Total-(AnB)

I know (AuB)=(A)+(B)-(AnB) which when rearranged can give us (AnB)=(A)+(B)-(AuB). But what happens when you have a not "~". Does the same formula hold true simply with the not's "~" distributed to each component?
1 KUDOS received
Manager
Manager
avatar
Joined: 12 Feb 2012
Posts: 108
Followers: 1

Kudos [?]: 10 [1] , given: 28

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 27 Jul 2013, 21:24
1
This post received
KUDOS
I would really appreciate someones help on the sentence structure.

Posted from my mobile device Image
Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5352 [2] , given: 165

How many numbers that are not divisible by 6 divide evenly [#permalink] New post 21 Aug 2013, 21:08
2
This post received
KUDOS
Expert's post
Responding to a pm:
Quote:

How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

hi,

please explain the above question. I am unable to understand the question

" 6 divide evenly into 264,600" wat does it mean.



"divide evenly into" means "is a factor of". Divides evenly means leaves no remainder.

Let's first find out the number of factors of 264,600.

264,600 = 2646 * 10 * 10 = 2^3*3^3*5^2*7^2

Total number of factors are (3+1)*(3+1)*(2+1)*(2+1) = 144

Now let's find the number of these 144 factors which are divisible by 6.
No of factors which are divisible by 6 - To make a 6, you need a 2 and a 3. So keep a 2 and a 3 aside and find the factors you can make with the rest of the primes.

No of factors of 2^2*3^2*5^2*7^2 = (2+1)*(2+1)*(2+1)*(2+1) = 81.
You can make 81 factors such that they will have a 6 in them i.e. will be divisible by 6.

So 81 of the 144 factors are divisible by 6. So the other 144 - 81 = 63 factors are not.

For more on this, check: http://www.veritasprep.com/blog/2010/12 ... ly-number/
Check out the discussion below the post as well.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 13 Jul 2013
Posts: 77
GMAT 1: 570 Q46 V24
Followers: 0

Kudos [?]: 4 [0], given: 21

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 21 Aug 2013, 21:58
Edit:

You say keep 2 and 3 aside. I dont get it what do you mean exactly?
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5352 [0], given: 165

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 21 Aug 2013, 22:17
Expert's post
theGame001 wrote:
How are you calculating total number of factors? Unable to understand, please help


Total number of factors of 2^a*3^b*5^c... (prime factorization) is given by (a+1)(b+1)(c+1)...

Check out the link given above. It has a detailed discussion on this concept.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5352 [2] , given: 165

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 21 Aug 2013, 22:21
2
This post received
KUDOS
Expert's post
theGame001 wrote:
Edit:

You say keep 2 and 3 aside. I dont get it what do you mean exactly?


You need to find the number of factors that are divisible by 6. So you certainly need 6.
You can do it in two ways. You pick a 2 and 3 and then choose what and whether you want to pick other factors too.

Or we can say that given 2^3*3^3*5^2*7^2, you can select a 2 in only 3 ways because you cannot have zero 2s. You must have one 2 or two 2s or three 3s. Similarly, you can select a 3 in only 3 ways (one 3 or two 3s or three 3s) and you can select 5 and 7 in 3 ways each (zero 5, one 5, two 5s) etc. So number of factors that must have 6 are 3*3*3*3.

Again, the link given above discusses this along with another detailed discussion in the comments below the post.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 13 Jul 2013
Posts: 77
GMAT 1: 570 Q46 V24
Followers: 0

Kudos [?]: 4 [0], given: 21

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 21 Aug 2013, 22:41
I am really sorry and I will understand if you don't reply.

Okay so I got that 264600 has 144 factors.

Just for my understanding lets say we have to find out how many numbers out of 144 are divisible by 6. After this step I am unable to understand why are we finding factors of 144?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23357
Followers: 3605

Kudos [?]: 28739 [0], given: 2839

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 22 Aug 2013, 03:52
Expert's post
theGame001 wrote:
I am really sorry and I will understand if you don't reply.

Okay so I got that 264600 has 144 factors.

Just for my understanding lets say we have to find out how many numbers out of 144 are divisible by 6. After this step I am unable to understand why are we finding factors of 144?


Merging similar topics.

Check these posts:
how-many-numbers-that-are-not-divisible-by-6-divide-evenly-126647.html#p1035622
how-many-numbers-that-are-not-divisible-by-6-divide-evenly-126647.html#p1035801

Hope this helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 13 Jul 2013
Posts: 77
GMAT 1: 570 Q46 V24
Followers: 0

Kudos [?]: 4 [0], given: 21

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 22 Aug 2013, 09:47
Can someone please explain. I am unable to sleep because this is driving me mad.

I am unable to understand how to find the factors divisible by 6 in 144?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23357
Followers: 3605

Kudos [?]: 28739 [0], given: 2839

Re: How many numbers that are not divisible by 6 divide evenly [#permalink] New post 22 Aug 2013, 09:55
Expert's post
theGame001 wrote:
Can someone please explain. I am unable to sleep because this is driving me mad.

I am unable to understand how to find the factors divisible by 6 in 144?


Several solutions are provided above. So, please elaborate what didn't you understand.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: How many numbers that are not divisible by 6 divide evenly   [#permalink] 22 Aug 2013, 09:55
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic How many numbers that are not divisible by 6 divide evenly VeritasPrepKarishma 0 21 Aug 2013, 22:41
4 Experts publish their posts in the topic Three is the largest number that can be divided evenly into smartass666 2 24 Sep 2012, 19:06
How many 3 digits numbers are there so that each is evenly bmwhype2 9 21 Oct 2007, 19:50
Which of the following numbers is evenly divisible by 9, 11, GMATT73 3 10 Nov 2005, 22:47
What is the largest prime number that can divide evenly into GMATT73 9 16 Oct 2005, 00:02
Display posts from previous: Sort by

How many numbers that are not divisible by 6 divide evenly

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 33 posts ] 



cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.