Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: how many odd integers are greater than the integer x and [#permalink]
26 Jan 2013, 00:05

nothingman wrote:

Hi! why is it that nobody (and I mean on any forum) has considered X to be a negative integer? If that's the case then the option E would be the clear answer, wouldn't it?

It doesnt matter whether x or y are negative, the pattern will still be the same. Note that 0 is considered as even. _________________

Re: How many odd integers are greater than the integer x and [#permalink]
23 Feb 2013, 11:58

You can consider x to be a negative number say -10 and y to be a positive number. Now statement 2 states that there are 24 numbers greater than x and lesser than y. Hence, the value of y is 15. Now, calculate the number of odd numbers between these numbers. It will be 12 -9,-7,-5,-3,-1,1,3,5,7,9,11,13.

Even if x is a negative odd number and y a positive even numbers with 24 numbers between them, the result would be same. I am unsure of how you found statement 2 to be INSUFFICIENT.

It would be great if you could let me know about your understanding of this statement.

nothingman wrote:

Hi! why is it that nobody (and I mean on any forum) has considered X to be a negative integer? If that's the case then the option E would be the clear answer, wouldn't it?

Re: How many odd integers are greater than the integer x and [#permalink]
25 Feb 2013, 10:54

Statement 2 states that There are 24 integers greater than x and less than y. There are totally 24 integers between these two numbers excluding these two numbers. The statement does not mention anything about the sign or values of this number. There is no other way for 24 integers to exist between 2 integers without being consecutive.

Consider the number of integers between 1 and 10 exclusive. The answer has to be 8(2,3,4,5,6,7,8,9). Is there any other possible answer?

Hope this helps!

jbisht wrote:

Orange08 wrote:

How many odd integers are greater than the integer x and less than the integer y?

(1) There are 12 even integers greater than x and less than y (2) There are 24 integers greater than x and less than y

in case (2) Is it good to assume that these are 24 consecutive integers ??

Re: How many odd integers are greater than the integer x and [#permalink]
26 Apr 2014, 08:01

Statement (ii) is really tricky one.

At first I thought If X= 1 I can take any number for Y say y= 50 and I can put any 24 numbers between them.

These numbers can all be even. But The sentence " There are 24 integers greater than x and less than y " is not what I am thinking.

If x=1, y=50 , how can it be 24 integers in between them? Actually, without writing I thought it wrongly but when I wrote example, I realized that the numbers are consecutive.

Re: How many odd integers are greater than the integer x and [#permalink]
04 May 2014, 23:10

hi bunnel

st 1 can still be written and tried... but st 2 will be time consuming... how do we know for sure that when there r 24 even I between x & y then there will be 24 odd I, without manually doing this? as doing it manually time consuming...

as you suggest we should take smaller number to try but how to decide which numbers will gave same result as 12 & 24.. any double? like i can take 4 for case 1 and 8 for case 2? _________________

Hope to clear it this time!! GMAT 1: 540 Preparing again

Re: How many odd integers are greater than the integer x and [#permalink]
05 May 2014, 00:47

Expert's post

1

This post was BOOKMARKED

nandinigaur wrote:

hi bunnel

st 1 can still be written and tried... but st 2 will be time consuming... how do we know for sure that when there r 24 even I between x & y then there will be 24 odd I, without manually doing this? as doing it manually time consuming...

as you suggest we should take smaller number to try but how to decide which numbers will gave same result as 12 & 24.. any double? like i can take 4 for case 1 and 8 for case 2?

(2) says that there are 24 (even) integers greater than integer x and less than integer y. The important part is that the number of integers between x and y is even. In this case half of them must be odd and another half must be even. How else? Can there be 11 odd integers and 13 odd integer greater than x and less than y?

If we were told that there are 3 (odd) integers greater than integer x and less than integer y, then this would be insufficient, because there could be 1 odd and 2 evens or 2 odds and 1 even. _________________

Re: How many odd integers are greater than the integer x and [#permalink]
22 Oct 2014, 02:14

Bunuel wrote:

Orange08 wrote:

How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y 2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them; If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them; If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them; If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

Answer: B.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:

why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

Hi Bunuel If in statement-2, there is odd number ..like 5 integers between x and y then it will be insuff ? Thanks.

Re: How many odd integers are greater than the integer x and [#permalink]
22 Oct 2014, 02:46

Expert's post

anupamadw wrote:

Bunuel wrote:

Orange08 wrote:

How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y 2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them; If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them; If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them; If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

Answer: B.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:

why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

Hi Bunuel If in statement-2, there is odd number ..like 5 integers between x and y then it will be insuff ? Thanks.

Yes, in that case the statement would be insufficient. We could have 2 odd, 3 even or 2 even, 3 odd. _________________

Re: How many odd integers are greater than the integer x and [#permalink]
23 Oct 2014, 22:43

Hi Bunuel, i did not understand the 2nd statement (2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient

but question does not says that 24 integers are consecutive integers.

Bunuel wrote:

Orange08 wrote:

How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y 2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them; If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them; If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them; If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

Answer: B.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:

why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

_________________

--------------------------------------------------------------------------------------------- Kindly press +1 Kudos if my post helped you in any way

Re: How many odd integers are greater than the integer x and [#permalink]
24 Oct 2014, 02:25

Expert's post

sunita123 wrote:

Hi Bunuel, i did not understand the 2nd statement (2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient

but question does not says that 24 integers are consecutive integers.

Bunuel wrote:

Orange08 wrote:

How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y 2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them; If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them; If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them; If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

Answer: B.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:

why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Re: How many odd integers are greater than the integer x and [#permalink]
24 Oct 2014, 04:05

Orange08 wrote:

How many odd integers are greater than the integer x and less than the integer y?

(1) There are 12 even integers greater than x and less than y (2) There are 24 integers greater than x and less than y

B.

1) There are 12 even integers greater than x and less than y let the list of even integers be = 2,4,6,...,24 => x < (2,4,...,24) < y including odd integers: x < (1,2,3,...,25) < y now we cannot be sure if 1 or 25 (or both) would exist in this list or not. so insufficient.

2) There are 24 integers greater than x and less than y considering the aforementioned list again even if we consider 1-24 or 2-25 we will have the same number of odd integers. so sufficient. _________________

Illegitimi non carborundum.

gmatclubot

Re: How many odd integers are greater than the integer x and
[#permalink]
24 Oct 2014, 04:05

Back to hometown after a short trip to New Delhi for my visa appointment. Whoever tells you that the toughest part gets over once you get an admit is...