How many odd integers are greater than the integer x and : GMAT Data Sufficiency (DS) - Page 2
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 06 Dec 2016, 08:28

Yale SOM:

Admit calls are happening now. Join chat room for live updates

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many odd integers are greater than the integer x and

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Current Student
Joined: 27 Jun 2012
Posts: 418
Concentration: Strategy, Finance
Followers: 75

Kudos [?]: 765 [0], given: 184

Re: how many odd integers are greater than the integer x and [#permalink]

Show Tags

26 Jan 2013, 00:05
nothingman wrote:
Hi! why is it that nobody (and I mean on any forum) has considered X to be a negative integer? If that's the case then the option E would be the clear answer, wouldn't it?

It doesnt matter whether x or y are negative, the pattern will still be the same. Note that 0 is considered as even.
_________________

Thanks,
Prashant Ponde

Tough 700+ Level RCs: Passage1 | Passage2 | Passage3 | Passage4 | Passage5 | Passage6 | Passage7
VOTE GMAT Practice Tests: Vote Here
PowerScore CR Bible - Official Guide 13 Questions Set Mapped: Click here

VP
Joined: 08 Jun 2010
Posts: 1348
Followers: 3

Kudos [?]: 105 [0], given: 780

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

15 Feb 2013, 06:32
I fail this

if the number of intergers between x and y is even, half of the number is even, half is odd

if the number of interger between x and y is odd, there is 2 cases

case 1, the number of even numbers is larger than the number of odd number

case 2, the number of odd number is greater than the number of even number
Manager
Joined: 24 Sep 2012
Posts: 90
Location: United States
Concentration: Entrepreneurship, International Business
GMAT 1: 730 Q50 V39
GPA: 3.2
WE: Education (Education)
Followers: 4

Kudos [?]: 129 [0], given: 3

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

23 Feb 2013, 11:58
You can consider x to be a negative number say -10 and y to be a positive number. Now statement 2 states that there are 24 numbers greater than x and lesser than y. Hence, the value of y is 15. Now, calculate the number of odd numbers between these numbers. It will be 12
-9,-7,-5,-3,-1,1,3,5,7,9,11,13.

Even if x is a negative odd number and y a positive even numbers with 24 numbers between them, the result would be same. I am unsure of how you found statement 2 to be INSUFFICIENT.

It would be great if you could let me know about your understanding of this statement.

nothingman wrote:
Hi! why is it that nobody (and I mean on any forum) has considered X to be a negative integer? If that's the case then the option E would be the clear answer, wouldn't it?
Intern
Joined: 16 Jan 2013
Posts: 23
Followers: 0

Kudos [?]: 4 [0], given: 17

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

25 Feb 2013, 01:44
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

(1) There are 12 even integers greater than x and less than y
(2) There are 24 integers greater than x and less than y

in case (2) Is it good to assume that these are 24 consecutive integers ??
Manager
Joined: 24 Sep 2012
Posts: 90
Location: United States
Concentration: Entrepreneurship, International Business
GMAT 1: 730 Q50 V39
GPA: 3.2
WE: Education (Education)
Followers: 4

Kudos [?]: 129 [0], given: 3

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

25 Feb 2013, 10:54
Statement 2 states that There are 24 integers greater than x and less than y. There are totally 24 integers between these two numbers excluding these two numbers. The statement does not mention anything about the sign or values of this number. There is no other way for 24 integers to exist between 2 integers without being consecutive.

Consider the number of integers between 1 and 10 exclusive. The answer has to be 8(2,3,4,5,6,7,8,9). Is there any other possible answer?

Hope this helps!

jbisht wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

(1) There are 12 even integers greater than x and less than y
(2) There are 24 integers greater than x and less than y

in case (2) Is it good to assume that these are 24 consecutive integers ??
Manager
Joined: 11 Sep 2013
Posts: 153
Concentration: Finance, Finance
Followers: 2

Kudos [?]: 90 [0], given: 156

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

26 Apr 2014, 08:01
Statement (ii) is really tricky one.

At first I thought If X= 1 I can take any number for Y say y= 50 and I can put any 24 numbers between them.

These numbers can all be even. But
The sentence " There are 24 integers greater than x and less than y " is not what I am thinking.

If x=1, y=50 , how can it be 24 integers in between them?
Actually, without writing I thought it wrongly but when I wrote example, I realized that the numbers are consecutive.
Manager
Joined: 20 Oct 2013
Posts: 66
Followers: 0

Kudos [?]: 2 [0], given: 27

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

04 May 2014, 23:10
hi bunnel

st 1 can still be written and tried...
but st 2 will be time consuming... how do we know for sure that when there r 24 even I between x & y then there will be 24 odd I, without manually doing this? as doing it manually time consuming...

as you suggest we should take smaller number to try but how to decide which numbers will gave same result as 12 & 24..
any double? like i can take 4 for case 1 and 8 for case 2?
_________________

Hope to clear it this time!!
GMAT 1: 540
Preparing again

Math Expert
Joined: 02 Sep 2009
Posts: 35896
Followers: 6846

Kudos [?]: 89977 [0], given: 10395

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

05 May 2014, 00:47
Expert's post
1
This post was
BOOKMARKED
nandinigaur wrote:
hi bunnel

st 1 can still be written and tried...
but st 2 will be time consuming... how do we know for sure that when there r 24 even I between x & y then there will be 24 odd I, without manually doing this? as doing it manually time consuming...

as you suggest we should take smaller number to try but how to decide which numbers will gave same result as 12 & 24..
any double? like i can take 4 for case 1 and 8 for case 2?

(2) says that there are 24 (even) integers greater than integer x and less than integer y. The important part is that the number of integers between x and y is even. In this case half of them must be odd and another half must be even. How else? Can there be 11 odd integers and 13 odd integer greater than x and less than y?

If we were told that there are 3 (odd) integers greater than integer x and less than integer y, then this would be insufficient, because there could be 1 odd and 2 evens or 2 odds and 1 even.
_________________
Manager
Joined: 20 Oct 2013
Posts: 66
Followers: 0

Kudos [?]: 2 [0], given: 27

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

05 May 2014, 00:50
thanks bunnel... i guess i am understanding
_________________

Hope to clear it this time!!
GMAT 1: 540
Preparing again

Manager
Joined: 31 Jul 2014
Posts: 152
GMAT 1: 630 Q48 V29
Followers: 0

Kudos [?]: 42 [0], given: 373

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

22 Oct 2014, 02:14
Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

Hi Bunuel
If in statement-2, there is odd number ..like 5 integers between x and y then it will be insuff ?
Thanks.
Math Expert
Joined: 02 Sep 2009
Posts: 35896
Followers: 6846

Kudos [?]: 89977 [0], given: 10395

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

22 Oct 2014, 02:46
Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

Hi Bunuel
If in statement-2, there is odd number ..like 5 integers between x and y then it will be insuff ?
Thanks.

Yes, in that case the statement would be insufficient. We could have 2 odd, 3 even or 2 even, 3 odd.
_________________
Manager
Joined: 13 Oct 2013
Posts: 137
Concentration: Strategy, Entrepreneurship
Followers: 2

Kudos [?]: 36 [0], given: 125

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

23 Oct 2014, 22:43
Hi Bunuel,
i did not understand the 2nd statement
(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient

but question does not says that 24 integers are consecutive integers.

Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

_________________

---------------------------------------------------------------------------------------------
Kindly press +1 Kudos if my post helped you in any way

Math Expert
Joined: 02 Sep 2009
Posts: 35896
Followers: 6846

Kudos [?]: 89977 [0], given: 10395

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

24 Oct 2014, 02:25
sunita123 wrote:
Hi Bunuel,
i did not understand the 2nd statement
(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient

but question does not says that 24 integers are consecutive integers.

Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

_________________
Manager
Joined: 22 Jan 2014
Posts: 138
WE: Project Management (Computer Hardware)
Followers: 0

Kudos [?]: 51 [0], given: 135

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

24 Oct 2014, 04:05
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

(1) There are 12 even integers greater than x and less than y
(2) There are 24 integers greater than x and less than y

B.

1) There are 12 even integers greater than x and less than y
let the list of even integers be = 2,4,6,...,24
=> x < (2,4,...,24) < y
including odd integers: x < (1,2,3,...,25) < y
now we cannot be sure if 1 or 25 (or both) would exist in this list or not.
so insufficient.

2) There are 24 integers greater than x and less than y
considering the aforementioned list again
even if we consider 1-24 or 2-25 we will have the same number of odd integers.
so sufficient.
_________________

Illegitimi non carborundum.

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 12882
Followers: 561

Kudos [?]: 158 [0], given: 0

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

24 Oct 2015, 22:26
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 2270
GPA: 3.82
Followers: 156

Kudos [?]: 1315 [0], given: 0

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

26 Oct 2015, 00:15
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

How many odd integers are greater than the integer x and less than the integer y?

(1) There are 12 even integers greater than x and less than y
(2) There are 24 integers greater than x and less than y

There are 2 variables (x,y) and 2 equations from the question and the 2 conditions, so there is high chance (C) will be our answer.
Looking at the conditions together, if there are 12 even numbers out of the 24 integers, there are of course 12 odd integers, so the answer becomes (C). But this is an integer question which is one the the key questions, if we apply 4(A) mistake types,
Looking at condition 1, the number of odd integers becomes (35-11)/2+1=13 when x=10, y=36, and (33-13)/2+1=11 when x=11, y=35; this does not give unique answer, so this is insufficient.
From condition 2, if there are 24 integers, there has to be 12 even and 12 odd. This is sufficient, making the answer (B).

For cases where we need 2 more equation, such as original conditions with “2 variables”, or “3 variables and 1 equation”, or “4 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 70% chance that C is the answer, while E has 25% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, D or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
“Receive 5 Math Questions & Solutions Daily”
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Manager
Joined: 13 Dec 2013
Posts: 58
GPA: 2.71
Followers: 0

Kudos [?]: 4 [0], given: 21

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

01 Nov 2015, 23:28
Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

I might sound dumb but the fact that consecutive is confusing. we're only told 24 integers are greater than x :/
I was confused between B and E
Math Expert
Joined: 02 Sep 2009
Posts: 35896
Followers: 6846

Kudos [?]: 89977 [0], given: 10395

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

01 Nov 2015, 23:36
Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

I might sound dumb but the fact that consecutive is confusing. we're only told 24 integers are greater than x :/
I was confused between B and E

(2) says that: there are 24 integers greater than x and less than y. Naturally those 24 integers between x and y are consecutive, how else? Consider x=1 and y=26: there are following 24 integers between them: 2, 3, 4, ..., 25.

Also check this post about the same issue: how-many-odd-integers-are-greater-than-the-integer-x-and-100521.html#p809821

Hope it's clear.
_________________
Manager
Joined: 19 Oct 2012
Posts: 210
Location: India
Concentration: General Management, Operations
GMAT 1: 660 Q47 V35
GPA: 3.81
WE: Information Technology (Computer Software)
Followers: 1

Kudos [?]: 1 [0], given: 30

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

10 Aug 2016, 11:50
Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

Something further to this:
This question could have been a lot tedious if the 2nd stmt read
there are 23 numbers between x and y.

Odd number of consecutive integer would have thrown the count of evens and odds off balance.

In that case the correct answer would be E.

_________________

Citius, Altius, Fortius

Intern
Joined: 21 Jul 2016
Posts: 8
Location: United Arab Emirates
GPA: 2.97
WE: Operations (Other)
Followers: 0

Kudos [?]: 7 [0], given: 11

Re: How many odd integers are greater than the integer x and [#permalink]

Show Tags

20 Aug 2016, 21:34
Bunuel wrote:
Orange08 wrote:
How many odd integers are greater than the integer x and less than the integer y?

1) There are 12 even integers greater than x and less than y
2) There are 24 integers greater than x and less than y

Sorry, I tried to search the forum for previous explanations. But since the search was too generic, it didn't fetch any results.

(1) Here is the string of 12 even integers and 11 odd integers between them: eoeoeoeoeoeoeoeoeoeoeoe.

4 cases are possible:

If x and y are both odd then XeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11 odd integers between them;
If x and y are both even then XoeoeoeoeoeoeoeoeoeoeoeoeoY then there will be 11+2=13 odd integers between them;
If x is even and y is odd then XoeoeoeoeoeoeoeoeoeoeoeoeY then there will be 11+1=12 odd integers between them;
If x is odd and y is even then XeoeoeoeoeoeoeoeoeoeoeoeoY then again there will be 11+1=12 odd integers between them.

Not sufficient.

(2) Out of 24 consecutive integers greater than X and less than Y in any case half will be odd and another half will be even, so there are 12 odd integers greater than X and less than Y. Sufficient.

P.S. You can try instead of 12 and 24 some smaller numbers to simplify calculations for example 2 even integers for (1) and 4 integers for (2).

Orange08 wrote:
why are the integers assumed consecutive over here?

Are you talking about (2)? If we are told that there are 4 integers more than X=1 and less than Y=6, then these integers are 2, 3, 4, and 5 - 4 consecutive integers, how else? Note that half are odd and half are even. Or if X=2 and Y=7 then these integers would be 3, 4, 5 and 6 - 4 consecutive integers: half are odd and half are even.

Hope it's clear.

Great explanation as always Buunel! Happy to see the consecutive integers doubt clarified as well.

A little off topic, but first look at eoeoeoeoeoeoeoeoeoeoeoe reminded me of the minion from Despicable Me
Re: How many odd integers are greater than the integer x and   [#permalink] 20 Aug 2016, 21:34

Go to page   Previous    1   2   3    Next  [ 42 posts ]

Similar topics Replies Last post
Similar
Topics:
1 The function {x} is defined as the lowest odd integer greater than x. 1 06 Nov 2016, 12:53
The integer x is how much greater than 4? 2 29 Aug 2016, 02:57
1 If X is greater than two, is X the square of an odd prime integer? 2 25 Jun 2016, 23:23
5 How many integers are greater than x, but less than y? 7 25 Nov 2014, 07:26
15 How many odd integers are greater than the integer x and less than the 17 22 Feb 2009, 11:21
Display posts from previous: Sort by

How many odd integers are greater than the integer x and

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.