**Quote:**

MUST KNOW FOR GMAT:

Finding the Number of Factors of an Integer

First make prime factorization of an integer \(n=a^p*b^q*c^r\), where \(a\), \(b\), and \(c\) are prime factors of \(n\) and \(p\), \(q\), and \(r\) are their powers.

The number of factors of \(n\) will be expressed by the formula \((p+1)(q+1)(r+1)\). NOTE: this will include 1 and n itself.

i remembered that, but just caught in the term " odd factors " which is cleared now. All right, this was an odd factor case in which we don't have to consider Power of 2. what if we are asked about only even +ve factors. would then we be considering only power of 2 ?

for example: 540 = 2^2*3^3*5 ----

=>(2+1) = 3 _________________

I'm the Dumbest of All !!