How many powers of 900 are in 50! : GMAT Quantitative Section
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 19 Jan 2017, 07:56

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# How many powers of 900 are in 50!

Author Message
TAGS:

### Hide Tags

Director
Status: Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Joined: 17 Jul 2010
Posts: 690
Schools: Wharton, Sloan, Chicago, Haas
WE 1: 8 years in Oil&Gas
Followers: 15

Kudos [?]: 147 [0], given: 15

How many powers of 900 are in 50! [#permalink]

### Show Tags

08 Aug 2010, 07:49
Can one explain this answer clearly? This is actually a post in the GMATClub Math Tutorial (I don't know how to paste the link, sorry, am new). It says at the end that...

"We need all the prime {2,3,5} to be represented twice in 900, 5 can provide us with only 6 pairs, thus there is 900 in the power of 6 in 50!"

I did not understand this. What does "5 can provide us with only 6 pairs" mean? Is the answer only driven by that? What about 2 and 3? And if the powers had been all different for the original number say X = 2^4 3^7 5^9, then what?
_________________

Consider kudos, they are good for health

Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7078

Kudos [?]: 93176 [4] , given: 10553

Re: How many powers of 900 are in 50! [#permalink]

### Show Tags

08 Aug 2010, 07:59
4
KUDOS
Expert's post
2
This post was
BOOKMARKED
mainhoon wrote:
Can one explain this answer clearly? This is actually a post in the GMATClub Math Tutorial (I don't know how to paste the link, sorry, am new). It says at the end that...

"We need all the prime {2,3,5} to be represented twice in 900, 5 can provide us with only 6 pairs, thus there is 900 in the power of 6 in 50!"

I did not understand this. What does "5 can provide us with only 6 pairs" mean? Is the answer only driven by that? What about 2 and 3? And if the powers had been all different for the original number say X = 2^4 3^7 5^9, then what?

This is from my topic: math-number-theory-88376.html or everything-about-factorials-on-the-gmat-85592.html

If you have a problem understanding it don't worry, you won't need it for GMAT.

There is a following solution:
How many powers of 900 are in 50!
$$900=2^2*3^2*5^2$$

Find the power of 2:
$$\frac{50}{2}+\frac{50}{4}+\frac{50}{8}+\frac{50}{16}+\frac{50}{32}=25+12+6+3+1=47$$

= $$2^{47}$$

Find the power of 3:
$$\frac{50}{3}+\frac{50}{9}+\frac{50}{27}=16+5+1=22$$

=$$3^{22}$$

Find the power of 5:
$$\frac{50}{5}+\frac{50}{25}=10+2=12$$

=$$5^{12}$$

We need all of them (2,3,5) to be represented twice in 900, 5 can provide us with only 6 pairs, thus there is 900 in the power of 6 in 50!
900^6

To elaborate:

$$50!=900^xa=(2^2*3^2*5^2)^x*a$$, where $$x$$ is the highest possible value of 900 and $$a$$ is the product of other multiples of $$50!$$.

$$50!=2^{47}*3^{22}*5^{12}*b=(2^2*3^2*5^2)^6*(2^{35}*3^{10})*b=900^{6}*(2^{35}*3^{10})*b$$, where $$b$$ is the product of other multiples of $$50!$$. So $$x=6$$.

Below is another example:

Suppose we have the number $$18!$$ and we are asked to to determine the power of $$12$$ in this number. Which means to determine the highest value of $$x$$ in $$18!=12^x*a$$, where $$a$$ is the product of other multiples of $$18!$$.

$$12=2^2*3$$, so we should calculate how many 2-s and 3-s are in $$18!$$.

Calculating 2-s: $$\frac{18}{2}+\frac{18}{2^2}+\frac{18}{2^3}+\frac{18}{2^4}=9+4+2+1=16$$. So the power of $$2$$ (the highest power) in prime factorization of $$18!$$ is $$16$$.

Calculating 3-s: $$\frac{18}{3}+\frac{18}{3^2}=6+2=8$$. So the power of $$3$$ (the highest power) in prime factorization of $$18!$$ is $$8$$.

Now as $$12=2^2*3$$ we need twice as many 2-s as 3-s. $$18!=2^{16}*3^8*a=(2^2)^8*3^8*a=(2^2*3)^8*a=12^8*a$$. So $$18!=12^8*a$$ --> $$x=8$$.

_________________
Director
Status: Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Joined: 17 Jul 2010
Posts: 690
Schools: Wharton, Sloan, Chicago, Haas
WE 1: 8 years in Oil&Gas
Followers: 15

Kudos [?]: 147 [0], given: 15

Re: How many powers of 900 are in 50! [#permalink]

### Show Tags

08 Aug 2010, 08:17
Excellent explanation. Thanks for the detailed analysis! Also notice you moved the post, sorry about that.. Realize should have posted here to begin with.
_________________

Consider kudos, they are good for health

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13451
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: How many powers of 900 are in 50! [#permalink]

### Show Tags

23 Oct 2014, 04:29
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13451
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: How many powers of 900 are in 50! [#permalink]

### Show Tags

20 Mar 2016, 05:31
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: How many powers of 900 are in 50!   [#permalink] 20 Mar 2016, 05:31
Similar topics Replies Last post
Similar
Topics:
How to improve Quant from 50 to 51? 7 25 Jan 2015, 17:16
1 How to improve to 50 on Quant? 1 09 Aug 2013, 08:14
How many powers of 900 are in 50! 1 24 Jun 2012, 23:25
How to get to 50+ from Q49-50? 5 23 Feb 2012, 05:35
How many of each type 1 23 Aug 2011, 08:09
Display posts from previous: Sort by