Find all School-related info fast with the new School-Specific MBA Forum

It is currently 14 Sep 2014, 18:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many values can the integer p=|x+3|-|x-3| assume?

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 112

Kudos [?]: 1148 [0], given: 219

GMAT ToolKit User GMAT Tests User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 17 Jun 2013, 08:07
WholeLottaLove wrote:
I believe I understand 2x and how it functions - 2x must = an integer, so x can be any value so long as it produces an integer result between -6 and 6.

Here is where I continue to get tripped up, though. You say that for every value of x > 3, P=6. This I see, as I have plugged in a few integers > 3 for x and the result is always x. The same goes for integers less than negative 3.

Wait a second, I think I am making the mistake of looking for actual values to plug in for x rather than look for where the equation is positive and negative.

When x > 3, p=|x+3|-|x-3| doesn't change. For example:

when x=4
P=x+3-x+3
p=6

When x=-4
p=-(x+3)- -(x-3)
p=-x-3 - -x+3
p=-x-3 + x-3
p=-6

For any value in between:
x=1
P=(x+3)- -(x-3)
P=x+3 - -x+3
P=x+3 +x-3
P=2x

So, again, 2x must e an integer between -6 and 6 so any value of x is sufficient as long as it satisfies the constraints of -6 and 6?


99% correct.

The red part contains an error, the correct version is:
So, again, P(not 2x) must be an integer between -6 and 6 so any value of x is sufficient as long as it satisfies the constraints of -3 and 3 (-3<x<3) AND for it P=INTEGER,

so x=3/2 it's valid option: it's in the interval -3,3 and p=2*3/2=3 (integer between -6 and 6)
or x=3/4 it's a valid option: it's in the interval -3,3 BUT p=2*3/4=3/2 (not an integer)

But from there, from the red part, it's easier to count all the integer between 6 and -6, rather than to find the values of x that generate them (as I did above for x=3/2 and 3/4)

Hope it's clear
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 50 [0], given: 134

Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 17 Jun 2013, 08:32
Zarrolou wrote:
WholeLottaLove wrote:
I believe I understand 2x and how it functions - 2x must = an integer, so x can be any value so long as it produces an integer result between -6 and 6.

Here is where I continue to get tripped up, though. You say that for every value of x > 3, P=6. This I see, as I have plugged in a few integers > 3 for x and the result is always x. The same goes for integers less than negative 3.

Wait a second, I think I am making the mistake of looking for actual values to plug in for x rather than look for where the equation is positive and negative.

When x > 3, p=|x+3|-|x-3| doesn't change. For example:

when x=4
P=x+3-x+3
p=6

When x=-4
p=-(x+3)- -(x-3)
p=-x-3 - -x+3
p=-x-3 + x-3
p=-6

For any value in between:
x=1
P=(x+3)- -(x-3)
P=x+3 - -x+3
P=x+3 +x-3
P=2x

So, again, 2x must e an integer between -6 and 6 so any value of x is sufficient as long as it satisfies the constraints of -6 and 6?


99% correct.

The red part contains an error, the correct version is:
So, again, P(not 2x) must be an integer between -6 and 6 so any value of x is sufficient as long as it satisfies the constraints of -3 and 3 (-3<x<3) AND for it P=INTEGER,

so x=3/2 it's valid option: it's in the interval -3,3 and p=2*3/2=3 (integer between -6 and 6)
or x=3/4 it's a valid option: it's in the interval -3,3 BUT p=2*3/4=3/2 (not an integer)

But from there, from the red part, it's easier to count all the integer between 6 and -6, rather than to find the values of x that generate them (as I did above for x=3/2 and 3/4)

Hope it's clear


Ok,

So 2x must be an integer and the result must lie within -6 and 6 when the values of x lie within -3 and 3?

And (I know I asked this before but I'm not 100% sure) how do I know if it's a trap and not all values between -6 and 6 are valid?

Again, thank you for your patience and help.
1 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 112

Kudos [?]: 1148 [1] , given: 219

GMAT ToolKit User GMAT Tests User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 17 Jun 2013, 08:40
1
This post received
KUDOS
WholeLottaLove wrote:
Ok,

So 2x must be an integer and the result must lie within -6 and 6 when the values of x lie within -3 and 3?

And (I know I asked this before but I'm not 100% sure) how do I know if it's a trap and not all values between -6 and 6 are valid?

Again, thank you for your patience and help.


Yes, correct.

You know that there are no trap values because 2x is a straight line, so is defined for every x.
Lines in general are defined for every value of x. With this I mean that you can draw a line, and for whatever value of x you pick, you'll always find a corresponding value on the line.
You can ask yourself: is there any value of x for which 2x is not defined? The answer is no.

You're welcome :)
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 50 [0], given: 134

Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 08:40
How many values can the integer p=|x+3|-|x-3| assume?

A)6
B)7
C)13
D)12
E)Cannot be determined

We're not looking for how many valid solutions of "x" there are...we are looking for how many integers "p" there are (that's what was tripping me up before!!!)

We can do this by finding the range of values of x (i.e. what numbers, if any, does x lie between)

Find the check points: -3, 3

We have three ranges to test for: -3< x, -3<x<3, 3>x

For x<-3: |x+3|-|x-3| -(x+3)- -(x-3) -x-3 - (-x+3) -x-3 + x-3 P=-6
For -3<x<3 |x+3|-|x-3| (x+3) - -(x-3) (x+3) - (-x+3) (x+3) + x -3 P=2x
For x>3: |x+3|-|x-3| (x+3) - (x-3) (x+3) -x+3 P=6

So, the range of P is from -6 ≤ P ≤ 6. There are 13 integers between -6 and 6 inclusive.

Just one question - how do I know the values are inclusive (-6 ≤ p ≤ 6) as opposed to not (-6 < p < 6)?

Thanks!
1 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 112

Kudos [?]: 1148 [1] , given: 219

GMAT ToolKit User GMAT Tests User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 09:05
1
This post received
KUDOS
WholeLottaLove wrote:
How many values can the integer p=|x+3|-|x-3| assume?

A)6
B)7
C)13
D)12
E)Cannot be determined

We're not looking for how many valid solutions of "x" there are...we are looking for how many integers "p" there are (that's what was tripping me up before!!!)

We can do this by finding the range of values of x (i.e. what numbers, if any, does x lie between)

Find the check points: -3, 3

We have three ranges to test for: -3< x, -3<x<3, 3>x

For x<-3: |x+3|-|x-3| -(x+3)- -(x-3) -x-3 - (-x+3) -x-3 + x-3 P=-6
For -3<x<3 |x+3|-|x-3| (x+3) - -(x-3) (x+3) - (-x+3) (x+3) + x -3 P=2x
For x>3: |x+3|-|x-3| (x+3) - (x-3) (x+3) -x+3 P=6

So, the range of P is from -6 ≤ P ≤ 6. There are 13 integers between -6 and 6 inclusive.

Just one question - how do I know the values are inclusive (-6 ≤ p ≤ 6) as opposed to not (-6 < p < 6)?

Thanks!


Well, if you are not sure, you can plug in a value greater than 3 or less than -3 and see what you find.

p=|10+3|-|10-3|=|13|-|7|=6 so 6 is a possible value, same thing for x=-10

from a more methodical point of view, if x is greater than 3, the whole expression becomes

p=(x+3)-(x-3)=6 so 6 is a possible value

same thing for values less than -3.
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Intern
Intern
avatar
Joined: 09 Jun 2013
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 0

GMAT ToolKit User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 12:32
thanks to everyone's explanations, i think i've finally understood the solution to this problem.

now my question is, what's the best way to be solving this and similar type (multiple mods) questions to keep within the 2 mins mark?
would it be first, identifying the key ref points (e.g. 3 and -3, in this case) and then plugging in numbers within the ranges?
or is this just a concept that you need to get really good at and be able to quickly recognize the +/- setups of each mod for each of the respective scenarios? (e.g. if x<3, then setup equation with neg (x+3) and pos (x-3) cases).
1 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 112

Kudos [?]: 1148 [1] , given: 219

GMAT ToolKit User GMAT Tests User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 12:39
1
This post received
KUDOS
nancerella wrote:
thanks to everyone's explanations, i think i've finally understood the solution to this problem.

now my question is, what's the best way to be solving this and similar type (multiple mods) questions to keep within the 2 mins mark?
would it be first, identifying the key ref points (e.g. 3 and -3, in this case) and then plugging in numbers within the ranges?
or is this just a concept that you need to get really good at and be able to quickly recognize the +/- setups of each mod for each of the respective scenarios? (e.g. if x<3, then setup equation with neg (x+3) and pos (x-3) cases).


I think the quickest way is the one explained here: how-many-values-can-the-integer-p-x-3-x-3-assume-152859.html#p1225488

You find that the function p=|x+3|-|x-3| ranges from 6 to -6 : will assume every value in that range. The question asks for the number of INTEGER values p can have, so just count the integers between -6 and 6 included.

Hope it makes sense :)
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Intern
Intern
avatar
Joined: 09 Jun 2013
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 0

GMAT ToolKit User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 12:51
thanks for the response, zarrolou, and yes, i agree. that explanation makes it quite easy and quick to solve the problem.
i was just asking for these type of multi mod type questions - 2 or 3 mods on both sides of the equal sign - if there's a "go-to" strategy/process that cuts down on computation time.
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4751
Location: Pune, India
Followers: 1110

Kudos [?]: 5014 [0], given: 164

Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 20:35
Expert's post
Zarrolou wrote:
Just one thing before I proceed, my option E "cannot be determined" sounds good as possible answer.
Some users wrote to me saying that is the first thing that came into their mind when they saw the question. What do you think?

Thanks again Mike :)


I agree with Mike. 'Cannot be determined' is not a valid GMAT option. You probably wanted to say 'Infinite values'.

By the way, it's a very nice question. I think it has many subtle takeaways

p = |x+3| - |x-3|
First thing to realize here is that p needs to be an integer, not x.
Another thing, when you subtract two mods, the result takes the same value over a wide range.


____________________ -3 ___________x ___________3_________________________

<----------------------------

<-----------------------------------------------------------------


These are the two points -3 and 3 on the number line. We need to find
'the distance from -3' - 'the distance from 3' = p
i.e red line - green line.

Notice that the red line will cancel the part of green line to the left of -3 and hence red line - green line will always be -6 for all value to the left of -3.

Similarly, red line - green line will be 6 for all values to the right of 3.

The tricky values are the ones lying in between -3 and 3. When x = -3, we get p = -6. For some point between -3 and 3, we will get p = -5, -4, -3, -2.... 6. So there will be 13 values.
e.g. p = 5
If you move 0.5 to the right of -3, distance from -3 will be 0.5 and distance from 3 will be 5.5.
0.5 - 5.5 = -5

and so on...
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4751
Location: Pune, India
Followers: 1110

Kudos [?]: 5014 [1] , given: 164

Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 20:36
1
This post received
KUDOS
Expert's post
Zarrolou wrote:
How many values can the integer p=|x+3|-|x-3| assume?

A)6
B)7
C)13
D)12
E)Cannot be determined

My own question, as always any feedback is appreciated
Click here for the OE.




Also, it is not a 600-700 level question. It is certainly 700+ level.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 112

Kudos [?]: 1148 [0], given: 219

GMAT ToolKit User GMAT Tests User
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 01 Jul 2013, 23:46
VeritasPrepKarishma wrote:
Zarrolou wrote:
How many values can the integer p=|x+3|-|x-3| assume?

A)6
B)7
C)13
D)12
E)Cannot be determined

My own question, as always any feedback is appreciated
Click here for the OE.




Also, it is not a 600-700 level question. It is certainly 700+ level.


Thanks Karishma, I updated both the answer choices and the tags.
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Manager
Manager
avatar
Joined: 03 Mar 2013
Posts: 91
Location: India
Concentration: General Management, Marketing
GPA: 3.49
WE: Web Development (Computer Software)
Followers: 0

Kudos [?]: 7 [0], given: 6

Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 02 Jul 2013, 08:35
Zarrolou wrote:
How many values can the integer p=|x+3|-|x-3| assume?

A)6
B)7
C)13
D)12
E)Infinite values

My own question, as always any feedback is appreciated
Click here for the OE.


3



here's my take :
from -3 to 3, we have values from -6 to 6, so there are 13 in limit check for that option, it done :)

simple logic
Mod is always positive or negative and the value will always lie beteween the limits
xii maths :)
Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 476
Followers: 1

Kudos [?]: 50 [0], given: 134

Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 10 Jul 2013, 08:35
How many values can the integer p=|x+3|-|x-3| assume?

Checkpoints at -3, 3

x<-3, -3<x<3, x>3

x<-3:
p=|x+3|-|x-3|
p=-(x+3) - -(x-3)
p= -x-3 - (-x+3)
p= -x-3 + x -3
p= -6

-3<x<3
p=|x+3|-|x-3|
p= (x+3) - -(x-3)
p= x+3 + x -3
p= 2x

x>3
p=|x+3|-|x-3|
p=(x+3)-(x-3)
p= 6

So the range of p is from -6 to 6. There are a total of 13 integers between -6 and 6

(C) 13
SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2378
Followers: 194

Kudos [?]: 38 [0], given: 0

Premium Member
Re: How many values can the integer p=|x+3|-|x-3| assume? [#permalink] New post 20 Jul 2014, 21:44
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: How many values can the integer p=|x+3|-|x-3| assume?   [#permalink] 20 Jul 2014, 21:44
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic For how many integer values of m is x < m < y ? SwordfishII 3 10 Apr 2014, 18:37
27. (SC) If x2 + 12x + 20 < 0, how many integer values can x banksy 8 17 Mar 2011, 13:44
How many positive integers can be expressed as a product of gmatcraze 4 25 Aug 2008, 18:19
what is the value of x? assume x is an integer. (1) FN 10 09 Sep 2005, 07:21
Assuming order does NOT matter, how many ways can you WinWinMBA 1 25 May 2005, 14:13
Display posts from previous: Sort by

How many values can the integer p=|x+3|-|x-3| assume?

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 34 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.