Find all School-related info fast with the new School-Specific MBA Forum

It is currently 16 Sep 2014, 13:39

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How to identify perm or comb problem and with/w/o Repetition

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
Intern
Intern
avatar
Joined: 22 Feb 2010
Posts: 8
Followers: 0

Kudos [?]: 0 [0], given: 2

How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 09 May 2010, 00:45
1
This post was
BOOKMARKED
Is there an easy to way to find out whether the problem is permutation (with or without repetition) or combinataion (with or without repetition)...? any examples would be appreciated.. when is the situation, they mix both perm and comb.....

Apprecaiate your response.
3 KUDOS received
Intern
Intern
avatar
Joined: 05 Apr 2010
Posts: 6
Followers: 0

Kudos [?]: 3 [3] , given: 0

Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 12 May 2010, 16:50
3
This post received
KUDOS
Hi,

You should use a permutation when the order in which you are suppose to choose a number of objects from a set matters. As an example: In how many ways is it possible to arrange the letters of the word CAT in different 2-letter groups, where CA is different than AC (i.e., the order matters)?

3P52=\frac{3!}{(3-2)!}=\frac{3.2.1}{1!}=6. The general permutation formula is given by nPm=\frac{n!}{(n-m)!}. When both elements of the permutation are equal), nPn=n!.

If the order in which the objects are chosen doesn't matter, you use combinations - the formula is very similar to the permutations formula, but you find one more factorial in the denominator: nCm=\frac{n!}{(n-m)!m!}. Taking the same example, how many different 2-letter groups is it possible to get from the word CAT, considering that CA is the same as AC (i.e., the order doesn't matter)?

3C2=\frac{3!}{(3-2)!2!}=\frac{3.2.1}{1!2.1}=\frac{6}{2}=3

If there is repetition, i.e, if the is more than one particular element in the set, you should divide the permutation/combination value by the factorial of the number of objects that are identical. Examples:

How many different 5-letter words can be formed from the word APPLE? (note you have 2 Ps).

\frac{5P5}{2!}=\frac{5.4.3.2.1}{2.1}=\frac{120}{2}=60

How many different 6-digit numbers can be written using all of the following six digits: 4,4,5,5,5,7? (here you have 2 fours and 3 fives).

\frac{6P6}{2!3!}=\frac{6.5.4.3.2.1}{2.1.3.2.1}=\frac{720}{12}=60.

Hope this helps!
Intern
Intern
avatar
Joined: 22 Feb 2010
Posts: 8
Followers: 0

Kudos [?]: 0 [0], given: 2

Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 13 May 2010, 22:11
Thanks for the reply...Can you share any example where perm and comb used together... I understand 'order' plays the role..but from the question, I cant really figure that out.. May be missing something..

thanks again.
CIO
CIO
avatar
Joined: 02 Oct 2007
Posts: 1218
Followers: 87

Kudos [?]: 665 [0], given: 334

GMAT ToolKit User GMAT Tests User
Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 13 May 2010, 22:53
Very nice post! +1.

pepemelo wrote:
Hi,

You should use a permutation when the order in which you are suppose to choose a number of objects from a set matters. As an example: In how many ways is it possible to arrange the letters of the word CAT in different 2-letter groups, where CA is different than AC (i.e., the order matters)?

3P52=\frac{3!}{(3-2)!}=\frac{3.2.1}{1!}=6. The general permutation formula is given by nPm=\frac{n!}{(n-m)!}. When both elements of the permutation are equal), nPn=n!.

If the order in which the objects are chosen doesn't matter, you use combinations - the formula is very similar to the permutations formula, but you find one more factorial in the denominator: nCm=\frac{n!}{(n-m)!m!}. Taking the same example, how many different 2-letter groups is it possible to get from the word CAT, considering that CA is the same as AC (i.e., the order doesn't matter)?

3C2=\frac{3!}{(3-2)!2!}=\frac{3.2.1}{1!2.1}=\frac{6}{2}=3

If there is repetition, i.e, if the is more than one particular element in the set, you should divide the permutation/combination value by the factorial of the number of objects that are identical. Examples:

How many different 5-letter words can be formed from the word APPLE? (note you have 2 Ps).

\frac{5P5}{2!}=\frac{5.4.3.2.1}{2.1}=\frac{120}{2}=60

How many different 6-digit numbers can be written using all of the following six digits: 4,4,5,5,5,7? (here you have 2 fours and 3 fives).

\frac{6P6}{2!3!}=\frac{6.5.4.3.2.1}{2.1.3.2.1}=\frac{720}{12}=60.

Hope this helps!

_________________

Welcome to GMAT Club! :)
Facebook TwitterGoogle+LinkedIn
Want to solve GMAT questions on the go? GMAT Club iPhone app will help.
Please read this before posting in GMAT Club Tests forum
Result correlation between real GMAT and GMAT Club Tests
Are GMAT Club Test sets ordered in any way?

Take 15 free tests with questions from GMAT Club, Knewton, Manhattan GMAT, and Veritas.

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 08 Apr 2010
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 21 May 2010, 06:28
pepemelo wrote:

3P52=\frac{3!}{(3-2)!}=\frac{3.2.1}{1!}=6.


Should be:

3P2=\frac{3!}{(3-2)!}=\frac{3.2.1}{1!}=6.

Or am I missing something?
Intern
Intern
avatar
Joined: 05 Apr 2010
Posts: 6
Followers: 0

Kudos [?]: 3 [0], given: 0

Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 21 May 2010, 06:40
Yes, you are right! It was a typing mistake.

Thanks!
Intern
Intern
avatar
Joined: 08 Apr 2010
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 21 May 2010, 06:42
Thank goodness! I was writing out the problem, and I couldn't figure out where the "52" was coming from. Thanks for the explanation, it is terrific!
Intern
Intern
avatar
Status: Awesome
Joined: 26 Jan 2010
Posts: 45
Location: United States (CA)
Concentration: Real Estate, International Business
Followers: 0

Kudos [?]: 8 [0], given: 0

Re: How to identify perm or comb problem and with/w/o Repetition [#permalink] New post 23 May 2010, 01:12
What would you use with the following problem? (Going off of memory, so I apologize if it sounds weird.)

You have four left socks and four right socks. All of the eight socks are jumbled into one big pile. If you draw socks out at random, what is the probability that you are able to make two pairs of left socks only, and two pairs of right socks only from the entire set of eight socks?

Let me know if I need to be more descriptive and I'll try to locate the problem...
Re: How to identify perm or comb problem and with/w/o Repetition   [#permalink] 23 May 2010, 01:12
    Similar topics Author Replies Last post
Similar
Topics:
1 Experts publish their posts in the topic distinguish perm/comb 386390 3 08 Nov 2011, 14:14
Baseball game - Perm or Comb HG 4 22 Nov 2008, 13:15
perm n comb question just4u1530 5 10 Oct 2007, 11:49
perm or comb? ps joemama142000 4 18 Jan 2006, 10:20
Perm & Comb trulyblessed 3 15 Sep 2005, 20:35
Display posts from previous: Sort by

How to identify perm or comb problem and with/w/o Repetition

  Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: Bunuel, WoundedTiger



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.