Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If 0 < x < 1, is it possible to write x as a terminating dec [#permalink]
24 Jun 2013, 01:32

14

This post received KUDOS

Expert's post

If 0 < x < 1, is it possible to write x as a terminating decimal?

(1) 24x is an integer --> 24x=m, where m an integer --> x=\frac{m}{24}=\frac{m}{2^3*3}, If m is a multiple of 3, then the answer is YES, else the answer is NO. Not sufficient.

(2) 28x is an integer --> 28x=n, where n an integer --> x=\frac{n}{28}=\frac{n}{2^2*7}, If n is a multiple of 7, then the answer is YES, else the answer is NO. Not sufficient.

(1)+(2) x=\frac{m}{2^3*3}=\frac{n}{2^2*7} --> \frac{m}{n}=\frac{2*3}{7} --> m IS a multiple of 3 (as well as n IS multiple of 7). Sufficient.

Answer: C.

Theory: Reduced fraction \frac{a}{b} (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and onlyb (denominator) is of the form 2^n5^m, where m and n are non-negative integers. For example: \frac{7}{250} is a terminating decimal 0.028, as 250 (denominator) equals to 2*5^2. Fraction \frac{3}{30} is also a terminating decimal, as \frac{3}{30}=\frac{1}{10} and denominator 10=2*5.

Note that if denominator already has only 2-s and/or 5-s then it doesn't matter whether the fraction is reduced or not.

For example \frac{x}{2^n5^m}, (where x, n and m are integers) will always be the terminating decimal.

We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \frac{6}{15} has 3 as prime in denominator and we need to know if it can be reduced.

Re: If 0 < x < 1, is it possible to write x as a terminating [#permalink]
27 Jun 2013, 21:37

4

This post received KUDOS

If 0 < x < 1, is it possible to write x as a terminating decimal? (1) 24x is an integer. (2) 28x is an integer.

Reduced fraction \frac{a}{b} (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and onlyb (denominator) is of the form 2^n5^m, where m and n are non-negative integers

Statement 1- If 24x is an integer than x can take the following values 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24 Some values of x can be reduced to a terminating decimal (1/2, 1/4, 1/8), while few can not be (1/3,1/6,1/12, 1/24) Insufficient

Statement 2- If 28x is an integer than x can take the following values 1/2, 1/4, 1/7, 1/14, 1/28 Some values of x can be reduced to a terminating decimal (1/2, 1/4), while few can not be (1/7, 1/14, 1/28) Insufficient

Statement 1& 2- If both 24x & 28x are integers than x can take the following values 1/2, 1/4 Both of these values of x can be reduced to a terminating decimal Sufficient

Ans C.

Hope the explanation will help many. _________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

Re: If 0 < x < 1, is it possible to write x as a terminating dec [#permalink]
20 Aug 2013, 03:16

1

This post received KUDOS

Rock750 wrote:

If 0 < x < 1, is it possible to write x as a terminating decimal?

(1) 24x is an integer.

(2) 28x is an integer.

I have a bit of difficulty in understanding the intended meaning of "is it possible" part of the question.

The answer can be yes and ofcourse no, but just that there is a possibility that the answer could be yes confuses me a bit. Had the question been framed like this " is x a terminating decimal?", then it would have been clearer. The use of the term "possible" makes it just a bit ambiguous.

Re: If 0 < x < 1, is it possible to write x as a terminating dec [#permalink]
20 Aug 2013, 04:57

Expert's post

agourav wrote:

Rock750 wrote:

If 0 < x < 1, is it possible to write x as a terminating decimal?

(1) 24x is an integer.

(2) 28x is an integer.

I have a bit of difficulty in understanding the intended meaning of "is it possible" part of the question.

The answer can be yes and ofcourse no, but just that there is a possibility that the answer could be yes confuses me a bit. Had the question been framed like this " is x a terminating decimal?", then it would have been clearer. The use of the term "possible" makes it just a bit ambiguous.

Put up for guidance please.

The question basically asks: if x is written as a decimal will it be a terminating decimal?

Re: If 0 < x < 1, is it possible to write x as a terminating dec [#permalink]
07 Sep 2013, 04:30

Expert's post

thebloke wrote:

since the question asks "is it possible", wouldn't the answer be D since .5 is a terminating decimal and 24*.5=12, and 28*.5=24?

You misinterpret the question. The question asks: if x is written as a decimal will it be a terminating decimal? Thus the correct answer is C, not D. _________________

Re: If 0 < x < 1, is it possible to write x as a terminating dec [#permalink]
05 Jan 2014, 08:48

we know that x is a proper positive fraction. we need to check whether x has powers of 5 or 2 in the denominator or not.

1. 24(x)=INT ---> x=Int/24 if our integer is 3 then x is can be written as a terminating decimal otherwise x will be a non-terminating decimal

2. 28(x)=INT ----> same story here if our int is 7 then x can be written as a terminating decimal, otherwise x will be a non-terminating decimal

1+2 Int/3(2^3)=Int/7(2^2) -----> 7(4)Int=8(3)Int the expression has to be equal on both sides thus on the right hand side we need a 7 and on the right hand side we need a 3 and a two. We now know that our integer a terminating decimal because we can get rid of both 7 and 3 in the denominator.

C.

Hope it helps. _________________

Either suffer the pain of discipline, or suffer the pain of regret.

If my posts are helping you show some love awarding a kudos

gmatclubot

Re: If 0 < x < 1, is it possible to write x as a terminating dec
[#permalink]
05 Jan 2014, 08:48