Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
05 Apr 2012, 15:46
16
This post received KUDOS
Expert's post
10
This post was BOOKMARKED
If 0<x<y, is y-x < 0.00005
Notice that \(0.00005=\frac{5}{100,000}=\frac{3}{60,000}\), and \(\frac{1}{15,000}=\frac{4}{60,000}\).
So, we can rewrite the question as:
If 0<x<y, is y-x<3
(1) x>1 --> if \(x=2\) and \(y=3\) then the answer is YES but if \(x=2\) and \(y=5\) the answer is NO. Not sufficient. (2) y<4 --> if \(x=2\) and \(y=3\) then the answer is YES but if \(x=0.5\) and \(y=3.5\) the answer is NO. Not sufficient.
(1)+(2) Remember we can subtract inequalities if their signs are in opposite directions --> subtract (1) from (2): \(y-x<4-1\) --> \(y-x<3\). Sufficient.
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
05 Apr 2012, 16:57
1
This post received KUDOS
imhimanshu wrote:
If 0<x<y, is y-x < 0.00005
(1) x>1/60,000 (2) y<1/15,000
1) NS - nothing about y 2) NS - nothing about x
So it's between E and C
Is y-x < 1/20,000? LT = less than GT = Great than LT 1/15,000 - GT 1/60,000 < 1/20,000. Multiply by 60,000 to simplify results in LT 4 - GT 1 < 3? Test extremes - 3.9 - 1.1 = 2.8 . YES ...sufficient. C
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
21 Feb 2013, 16:53
yezz wrote:
DelSingh wrote:
If 0<x<y, is y-x < 0.00005
(1) x>1/60,000 (2) y<1/15,000
this ain't 700 or 600-700 level question , it is way sub 600
anyways
the question is asking whether the difference between both +ve numbers x,y is very small ie. 5/100,000 = 1/20,000
obviously each alone is not suff
both
subtract 2 from 1
x-y >-1/20,000... i.e. y-x<1/20,000.....an then answer is a definite yes ...c
I took off the difficulty, but GMAT Prep did rate this medium level.
Anyway, I understand why the both statements are insufficient but I do not know how you combines them? What did you when you 'subtracted 2 from 1'? _________________
If my post has contributed to your learning or teaching in any way, feel free to hit the kudos button ^_^
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
21 Feb 2013, 22:26
When you subtract 1 from 2, you get the value of y-x. However, since we know only one sided limits of these values, let's consider those values.
y-x=(1/15000)-(1/60,000)
Taking L.CM. y-x=1/20,000
y-x=0.00005
However, this just gives us the limit of the difference. Since y<1/15,000 and x>1/60,000, a bigger number on the L.H.S is being subtracted from a smaller number and hence, the actual difference will be less than 1/20,000. This is by applying concept. Let us test values for better understanding.
For e.g. the value of y could be y=1/20,000(the greater the denominator, the smaller the number and hence y>1/15000) and x=1/40,000(by similar idea)
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
21 Feb 2013, 22:37
11
This post received KUDOS
Expert's post
5
This post was BOOKMARKED
DelSingh wrote:
If 0<x<y, is y-x < 0.00005
(1) x>1/60,000 (2) y<1/15,000
Source: GMAT Prep question pack 1
There are two ways to deal with it.
Method 1:
Is y-x < 0.00005?
We can see that both statements alone are not sufficient.
(1) x>1/60,000 (2) y<1/15,000
We know that we can add inequalities when they have the same sign ie. a < b c < d then, a+c < b+d
Also, when we multiply an inequality by -1, the inequality sign flips. x>1/60,000 implies -x < -1/60,000
You can add these two inequalities: -x < -1/60,000 and y<1/15,000 to get y-x < 1/15000 - 1/60,000 which is y-x < 1/20,000 i.e. y-x < 0.00005
Another method is to see this on the number line. Draw a number line to understand this.
0<x<y implies that x and y are both positive and x is to the left of y on the number line. Is y-x < 0.00005 means is the distance between x and y less than .00005?
(1) x>1/60,000 means x lies to the right of 1/60,000
(2) y<1/15,000 means y lies to the left of 4/60,000
So the distance between them must be less than 4/60,000 - 1/60,000 = 3/60,000 = .00005 _________________
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
21 Feb 2013, 23:20
1
This post received KUDOS
If 0<x<y, is y-x < 0.00005
(1) x>1/60,000 (2) y<1/15,000
Solution: (Answer is C)
What do we know?
X is positive and Y is greater than X. What do we need to know?
Is Y is less than 0.00005 + X?
Whenever you face a Data Sufficiency question asking Yes, No. Simply substitute and try to disprove the statement. Statement(1):
X is greater than 1/60,000 = 0.00001666
Which does not tell any relation between X and Y
Hence it is insufficient.
Statement (2) is also insufficient as it only tells that Y is less than 0.000066 (It is very important to know the importance of converting fractions to percentage)
If we combine both the statements, we get that X is greater than 0.000016 and Y is less than 0.000066
Now the question is asking us that y-x<0.00005, to try to disprove that we need to maximize y-x and for that let us get the maximum value of y and minimum value of x. Let us say y = 0.000065 and x = 0.000017 So the maximum difference is = 0.000065 - 0.000017 = 0.000048
Hence combining both the statements we can say that y-x will always be less than 0.000048. Hence answer is (C) _________________
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
22 Feb 2013, 03:29
1
This post received KUDOS
DelSingh wrote:
yezz wrote:
DelSingh wrote:
If 0<x<y, is y-x < 0.00005
(1) x>1/60,000 (2) y<1/15,000
this ain't 700 or 600-700 level question , it is way sub 600
anyways
the question is asking whether the difference between both +ve numbers x,y is very small ie. 5/100,000 = 1/20,000
obviously each alone is not suff
both
subtract 2 from 1
x-y >-1/20,000... i.e. y-x<1/20,000.....an then answer is a definite yes ...c
I took off the difficulty, but GMAT Prep did rate this medium level.
Anyway, I understand why the both statements are insufficient but I do not know how you combines them? What did you when you 'subtracted 2 from 1'?
for 2 ineq to subtract they have to be with opposit direction , one of them is bigger than and 2nd is smaller than and what u do is keep the sign ( direction in terms of bigger than or smaller than) of the ineq from which u subtract the 2nd ....
Another way of seeing it is as follows
if we subtract 1 from 2
is like flipping the sign of 1 and adding it to the 2nd , thus
x>1/60,000 becomes -x<-1/60,000...............1 after changing direction ( flipping the sign)
Re: If 0 < x < y , is y - x < 0.00005 ? [#permalink]
27 Apr 2013, 01:58
2
This post received KUDOS
(1) Insufficient. We know nothing about \(y\). (2) Insufficient. We know nothing about \(x\).
(1)+(2) Sufficient. We know that \(y<\frac{1}{15,000}\) and \(-x<-\frac{1}{60,000}\). If we add this two inequalities we will get: \(y-x<\frac{1}{15,000}-\frac{1}{60,000}=\frac{1}{20,000}=0.00005\)
The correct answer is C. _________________
I'm happy, if I make math for you slightly clearer And yes, I like kudos:)
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
05 Jun 2014, 02:01
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
05 Dec 2014, 16:45
Bunuel wrote:
If 0<x<y, is y-x < 0.00005
Notice that \(0.00005=\frac{5}{100,000}=\frac{3}{60,000}\), and \(\frac{1}{15,000}=\frac{4}{60,000}\).
So, we can rewrite the question as:
If 0<x<y, is y-x<3
(1) x>1 --> if \(x=2\) and \(y=3\) then the answer is YES but if \(x=2\) and \(y=5\) the answer is NO. Not sufficient. (2) y<4 --> if \(x=2\) and \(y=3\) then the answer is YES but if \(x=0.5\) and \(y=3.5\) the answer is NO. Not sufficient.
(1)+(2) Remember we can subtract inequalities if their signs are in opposite directions --> subtract (1) from (2): \(y-x<4-1\) --> \(y-x<3\). Sufficient.
Answer: C.
Hi Bunuel,
This is great. I actually went the long division route and it took quite some time.
Can you suggest similar problems where we manipulate fractions/decimals as such?
I clicked on the tab on the top right but it just let me to regular inequalities problems.
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
27 Nov 2015, 09:50
Bunuel wrote:
If 0<x<y, is y-x < 0.00005
Notice that \(0.00005=\frac{5}{100,000}=\frac{3}{60,000}\), and \(\frac{1}{15,000}=\frac{4}{60,000}\).
So, we can rewrite the question as:
If 0<x<y, is y-x<3
(1) x>1 --> if \(x=2\) and \(y=3\) then the answer is YES but if \(x=2\) and \(y=5\) the answer is NO. Not sufficient. (2) y<4 --> if \(x=2\) and \(y=3\) then the answer is YES but if \(x=0.5\) and \(y=3.5\) the answer is NO. Not sufficient.
(1)+(2) Remember we can subtract inequalities if their signs are in opposite directions --> subtract (1) from (2): \(y-x<4-1\) --> \(y-x<3\). Sufficient.
Answer: C.
In the beginning of your explanation, how do you get 1/15,000 and 4/60,000 ?
Re: If 0<x<y, is y-x < 0.00005 [#permalink]
21 Dec 2015, 09:14
VeritasPrepKarishma wrote:
DelSingh wrote:
If 0<x<y, is y-x < 0.00005
(1) x>1/60,000 (2) y<1/15,000
Source: GMAT Prep question pack 1
There are two ways to deal with it.
Method 1:
Is y-x < 0.00005?
We can see that both statements alone are not sufficient.
(1) x>1/60,000 (2) y<1/15,000
We know that we can add inequalities when they have the same sign ie. a < b c < d then, a+c < b+d
Also, when we multiply an inequality by -1, the inequality sign flips. x>1/60,000 implies -x < -1/60,000
You can add these two inequalities: -x < -1/60,000 and y<1/15,000 to get y-x < 1/15000 - 1/60,000 which is y-x < 1/20,000 i.e. y-x < 0.00005
Another method is to see this on the number line. Draw a number line to understand this.
0<x<y implies that x and y are both positive and x is to the left of y on the number line. Is y-x < 0.00005 means is the distance between x and y less than .00005?
(1) x>1/60,000 means x lies to the right of 1/60,000
(2) y<1/15,000 means y lies to the left of 4/60,000
So the distance between them must be less than 4/60,000 - 1/60,000 = 3/60,000 = .00005
well explained. You got KUDO for this. _________________
Discipline does not mean control. Discipline means having the sense to do exactly what is needed.
gmatclubot
Re: If 0<x<y, is y-x < 0.00005
[#permalink]
21 Dec 2015, 09:14
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...