Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
07 May 2012, 23:02
7
This post received KUDOS
Expert's post
3
This post was BOOKMARKED
monir6000 wrote:
If \(2^{98} = 256L + N\), where \(L\) and \(N\) are integers and \(0 \le N \le 4\) , what is the value of \(N\) ?
A. 0 B. 1 C. 2 D. 3 E. 4
Given: \(2^{98}=2^8*L+N\) --> divide both parts by \(2^8\) --> \(2^{90}=L+\frac{N}{2^8}\). Now, as both \(2^{90}\) and L are an integers then \(\frac{N}{2^8}\) must also be an integer, which is only possible for \(N=0\) (since \(0\leq{N}\leq4\)).
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
08 May 2012, 00:30
Bunuel wrote:
monir6000 wrote:
If \(2^{98} = 256L + N\), where \(L\) and \(N\) are integers and \(0 \le N \le 4\) , what is the value of \(N\) ?
A. 0 B. 1 C. 2 D. 3 E. 4
Given: \(2^{98}=2^8*L+N\) --> divide both parts by \(2^8\) --> \(2^{90}=L+\frac{N}{2^8}\). Now, as both \(2^{90}\) and L are an integers then \(\frac{N}{2^8}\) must also be an integer, which is only possible for \(N=0\) (since \(0\leq{N}\leq4\)).
Answer: A.
Dear Bunuel,
could you pls explain why N/2^8 = 0 ? why it could not be another multiple of 2? L is also there? why we are sure L+N/2^8 do not = 2^90?
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
08 May 2012, 00:33
1
This post received KUDOS
Expert's post
kashishh wrote:
Bunuel wrote:
monir6000 wrote:
If \(2^{98} = 256L + N\), where \(L\) and \(N\) are integers and \(0 \le N \le 4\) , what is the value of \(N\) ?
A. 0 B. 1 C. 2 D. 3 E. 4
Given: \(2^{98}=2^8*L+N\) --> divide both parts by \(2^8\) --> \(2^{90}=L+\frac{N}{2^8}\). Now, as both \(2^{90}\) and L are an integers then \(\frac{N}{2^8}\) must also be an integer, which is only possible for \(N=0\) (since \(0\leq{N}\leq4\)).
Answer: A.
Dear Bunuel,
could you pls explain why N/2^8 = 0 ? why it could not be another multiple of 2? L is also there? why we are sure L+N/2^8 do not = 2^90?
Sure. Given that \(0\leq{N}\leq4\), so N can only be 0, 1, 2, 3, or 4. So, N/2^8 is an integer only for N=0.
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
20 Dec 2012, 02:02
Expert's post
Another approach to tackle this problem: The given relation is: \(2^98=256L+N\) This is actually written in "remainder format" i.e. X=Quotient*some integer + Remainder. Here X=\(2^98\), Quotient=256 and Remainder=0.
We just have to check whether \(256\) OR \(2^8\) divides \(2^ 98\). If yes, then the value of N is straightaway 0. No need to check choices even. _________________
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
27 May 2013, 15:02
Marcab wrote:
Another approach to tackle this problem: The given relation is: \(2^98=256L+N\) This is actually written in "remainder format" i.e. X=Quotient*some integer + Remainder. Here X=\(2^98\), Quotient=256 and Remainder=0.
We just have to check whether \(256\) OR \(2^8\) divides \(2^ 98\). If yes, then the value of N is straightaway 0. No need to check choices even.
Could you tell me if I'm understanding it correctly?
What if we had 12/5 = 2 remainder 2? Then in remainder format we would have 2 * 5 + 2 = 12.
So according to what you're saying, if we just have to check if 2 can divide 12? In this case it does, but the remainder is 2 not 0.
Please, help me in understanding where I'm going wrong.
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
28 May 2013, 00:36
youngkacha wrote:
Marcab wrote:
Another approach to tackle this problem: The given relation is: \(2^98=256L+N\) This is actually written in "remainder format" i.e. X=Quotient*some integer + Remainder. Here X=\(2^98\), Quotient=256 and Remainder=0.
We just have to check whether \(256\) OR \(2^8\) divides \(2^ 98\). If yes, then the value of N is straightaway 0. No need to check choices even.
Could you tell me if I'm understanding it correctly?
What if we had 12/5 = 2 remainder 2? Then in remainder format we would have 2 * 5 + 2 = 12.
So according to what you're saying, if we just have to check if 2 can divide 12? In this case it does, but the remainder is 2 not 0.
Please, help me in understanding where I'm going wrong.
Your reasoning unfortunately is incorrect since 5 is the divisor in question. The first 2 obtained is the quotient (which is the integer result obtained when dividing the numerator with the denominator) and cannot be used to question whether 2 divides 12 or not.
To further illustrate, take a look at the problem itself : \(2^98 = 256*L + N\) which can be rephased as the following : does 256 divide \(2^98\) ? (Since in this instance \(2^98\) is the numerator, 256 is the denominator, L is the quotient and N is the remainder). To which the answer, obviously, is yes, since 256 can be written as a power of two, in this case 2^8.
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
28 May 2013, 15:44
Virgilius wrote:
youngkacha wrote:
Marcab wrote:
Another approach to tackle this problem: The given relation is: \(2^98=256L+N\) This is actually written in "remainder format" i.e. X=Quotient*some integer + Remainder. Here X=\(2^98\), Quotient=256 and Remainder=0.
We just have to check whether \(256\) OR \(2^8\) divides \(2^ 98\). If yes, then the value of N is straightaway 0. No need to check choices even.
Could you tell me if I'm understanding it correctly?
What if we had 12/5 = 2 remainder 2? Then in remainder format we would have 2 * 5 + 2 = 12.
So according to what you're saying, if we just have to check if 2 can divide 12? In this case it does, but the remainder is 2 not 0.
Please, help me in understanding where I'm going wrong.
Your reasoning unfortunately is incorrect since 5 is the divisor in question. The first 2 obtained is the quotient (which is the integer result obtained when dividing the numerator with the denominator) and cannot be used to question whether 2 divides 12 or not.
To further illustrate, take a look at the problem itself : \(2^98 = 256*L + N\) which can be rephased as the following : does 256 divide \(2^98\) ? (Since in this instance \(2^98\) is the numerator, 256 is the denominator, L is the quotient and N is the remainder). To which the answer, obviously, is yes, since 256 can be written as a power of two, in this case 2^8.
Sorry, but I'm still lost. Marcab has the quotient as 256, but you're saying 256 is the divisor and L is the quotient?
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
19 Jul 2014, 01:36
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
26 Nov 2015, 05:57
Bunuel wrote:
monir6000 wrote:
If \(2^{98} = 256L + N\), where \(L\) and \(N\) are integers and \(0 \le N \le 4\) , what is the value of \(N\) ?
A. 0 B. 1 C. 2 D. 3 E. 4
Given: \(2^{98}=2^8*L+N\) --> divide both parts by \(2^8\) --> \(2^{90}=L+\frac{N}{2^8}\). Now, as both \(2^{90}\) and L are an integers then \(\frac{N}{2^8}\) must also be an integer, which is only possible for \(N=0\) (since \(0\leq{N}\leq4\)).
Answer: A.
I'm sorry but if you're dividing both sides of the equation by \(2^8\) won't it cancel on the right side of the equation? So how do we come to \(\frac{N}{2^8}\) ? _________________
Re: If 2^98=256L+N, where L and N are integers and [#permalink]
26 Nov 2015, 06:10
1
This post received KUDOS
Expert's post
redfield wrote:
Bunuel wrote:
monir6000 wrote:
If \(2^{98} = 256L + N\), where \(L\) and \(N\) are integers and \(0 \le N \le 4\) , what is the value of \(N\) ?
A. 0 B. 1 C. 2 D. 3 E. 4
Given: \(2^{98}=2^8*L+N\) --> divide both parts by \(2^8\) --> \(2^{90}=L+\frac{N}{2^8}\). Now, as both \(2^{90}\) and L are an integers then \(\frac{N}{2^8}\) must also be an integer, which is only possible for \(N=0\) (since \(0\leq{N}\leq4\)).
Answer: A.
I'm sorry but if you're dividing both sides of the equation by \(2^8\) won't it cancel on the right side of the equation? So how do we come to \(\frac{N}{2^8}\) ?
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...