Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, [#permalink]
05 Jan 2014, 19:53
3
This post received KUDOS
1
This post was BOOKMARKED
What's important to remember when faced with a Data Sufficiency Question is that you don't not need to solve. You need to figure out if you have enough information to solve.
First look at the prompt to figure out exactly what you need for sufficiency. If we know the value of x we can find the median. So when you evaluate the statements, ask yourself - "Can I find the value of x?"
Statement1: We have a linear equation with one variable, x. We can solve for x - Sufficient
Statement 2: Here we have a quadratic equation which typically has two solutions. Remember though that we have a range for x in the prompt, so it is possible only one of the solutions will fit in the range and lead us to sufficiency. 2x^2 -7x + 5 = 0 factors into (2x -5)(x-1) = 0 Leading us to the solutions x = 2.5 and x =1. Only x= 2.5 fits in the range 2<x<4, so we have one value for x and sufficiency.
Re: If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, [#permalink]
11 Apr 2015, 06:01
Bunuel wrote:
Substitute 2 and 5 into 2x^2 - 7x + 5 = 0 to see that neither is the root of the equation, while 1 and 5/2 are.
Here the 2(1, 2.5) values lead to 2 different medians so how is this sufficient?
I understand the fact that both values lie within the range specified, but it leads to 2 different answers- which is grounds for insufficiency. Can you pls explain how this explanation is wrong?
Re: If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, [#permalink]
11 Apr 2015, 15:26
1
This post received KUDOS
Expert's post
Hi TuringMachine,
You have to pay attention to ALL of the information that you've been given.
Notice at the beginning of the prompt, we were told that 2 < X < 4. That 'restriction' still applies.
With Fact 2, we have two potential values for X: 1 and 5/2, but ONLY 5/2 fits that initial range that we were given. Thus, 5/2 is the only possible value for X and we now have enough information answer to the question. Fact 2 is SUFFICIENT.
Re: If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, [#permalink]
09 Nov 2015, 07:46
the second eqn gives two values x =1 and 5/2 and when you insert you get two different median 1 and 5/2. SO that is why I choose a beause it gives only one value.
Re: If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, [#permalink]
09 Nov 2015, 12:03
1
This post received KUDOS
Expert's post
Hi alice7,
You have to pay attention to ALL of the information that you've been given.
Notice at the beginning of the prompt, we were told that 2 < X < 4. That 'restriction' still applies.
With Fact 2, we have two potential values for X: 1 and 5/2, but ONLY 5/2 fits that initial range that we were given. Thus, 5/2 is the only possible value for X and we now have enough information answer to the question. Fact 2 is SUFFICIENT.
Re: If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, [#permalink]
10 Nov 2015, 10:56
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.
If 2 < x < 4, what is the median of the numbers 0, 5, x, 1, 7, and 3?
(1) 2x−5=0
(2) 2x 2 −7x+5=0
There is one variable (X) and 2 equations from the 2 conditions, so (D) is our likely answer. For condition 1, x=5/2. This is sufficient. For condition 2, (2x-5)(x-1)=0, x=5/2, 1, but 1 is not possible, so x=5/2. This is sufficient as well, making the answer (D).
For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E. _________________
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...