Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If \(243^x*463^y =n\), where x and y are positive integers, what is the units digit of n?

The units digit of \(243^x\) is the same as the units digit of \(3^x\) and similarly the units digit of \(463^y\) is the same as the units digit of \(3^y\), so the units digit of \(243^x*463^y\) equals to the units digit of \(3^x*3^y=3^{x+y}\). So, knowing the value of \(x+y\) is sufficient to determine the units digit of \(n\).

(1) \(x + y = 7\). Sufficient. (As cyclicity of units digit of \(3\) in integer power is \(4\), units digit of \(3^7\) would be the same as of units digit of \(3^3\) which is \(7\))

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]
10 Sep 2013, 23:57

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]
03 Mar 2014, 04:18

I have a doubt. Cyclicity of unit digit of 3 is 4. Hence we know that every fourth power of 3 (3^4, 3^8, 3^12) will have the same unit digit, 1. Hence when option B says x = 4, knowing that x and y are positive integers, we know that xy will be a multiple of 4. Unit digit of 3^4k is always 1 isn't it? Shouldn't this be sufficient information?

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]
03 Mar 2014, 04:21

Expert's post

siriusblack1106 wrote:

I have a doubt. Cyclicity of unit digit of 3 is 4. Hence we know that every fourth power of 3 (3^4, 3^8, 3^12) will have the same unit digit, 1. Hence when option B says x = 4, knowing that x and y are positive integers, we know that xy will be a multiple of 4. Unit digit of 3^4k is always 1 isn't it? Shouldn't this be sufficient information?

Shouldn't the answer be D?

I think you are missing that \(3^x*3^y=3^{x+y}\), so the exponent is x+y not xy.

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]
03 Mar 2014, 04:28

Expert's post

siriusblack1106 wrote:

Yes! Can't believe I just made that mistake. Such mistakes are gonna cost me. :/

Yes, careless errors are the #1 cause of score drops on the GMAT! They cause you to miss easier questions, hurting your score a lot more than not know how to solve the harder ones. So, be more careful, before you submit your answer, double-check that it’s the answer to the proper question. _________________

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]
02 Nov 2014, 17:48

Bunuel wrote:

If \(243^x*463^y =n\), where x and y are positive integers, what is the units digit of n?

The units digit of \(243^x\) is the same as the units digit of \(3^x\) and similarly the units digit of \(463^y\) is the same as the units digit of \(3^y\), so the units digit of \(243^x*463^y\) equals to the units digit of \(3^x*3^y=3^{x+y}\). So, knowing the value of \(x+y\) is sufficient to determine the units digit of \(n\).

(1) \(x + y = 7\). Sufficient. (As cyclicity of units digit of \(3\) in integer power is \(4\), units digit of \(3^7\) would be the same as of units digit of \(3^3\) which is \(7\))

(2) \(x=4\). No info about \(y\). Not sufficient.

Answer: A.

Hope it helps.

Hi Bunuel,

But surely shouldn't it matter if 3 is raised to 1 and or 6? Meaning, if it's 3^3 + 3^4 = 7 + 1 = 8. But, if its 3^2+3^5 = 9 + 3 = 12, units of 2. Doesn't that yield insufficient?

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]
03 Nov 2014, 00:50

Expert's post

russ9 wrote:

Bunuel wrote:

If \(243^x*463^y =n\), where x and y are positive integers, what is the units digit of n?

The units digit of \(243^x\) is the same as the units digit of \(3^x\) and similarly the units digit of \(463^y\) is the same as the units digit of \(3^y\), so the units digit of \(243^x*463^y\) equals to the units digit of \(3^x*3^y=3^{x+y}\). So, knowing the value of \(x+y\) is sufficient to determine the units digit of \(n\).

(1) \(x + y = 7\). Sufficient. (As cyclicity of units digit of \(3\) in integer power is \(4\), units digit of \(3^7\) would be the same as of units digit of \(3^3\) which is \(7\))

(2) \(x=4\). No info about \(y\). Not sufficient.

Answer: A.

Hope it helps.

Hi Bunuel,

But surely shouldn't it matter if 3 is raised to 1 and or 6? Meaning, if it's 3^3 + 3^4 = 7 + 1 = 8. But, if its 3^2+3^5 = 9 + 3 = 12, units of 2. Doesn't that yield insufficient?

Are you sure you are reading the question correctly? It's 243^x*463^y, 243^x multiplied by 463^y not 243^x + 463^y... _________________

The Stanford interview is an alumni-run interview. You give Stanford your current address and they reach out to alumni in your area to find one that can interview you...

Originally, I was supposed to have an in-person interview for Yale in New Haven, CT. However, as I mentioned in my last post about how to prepare for b-school interviews...

Interested in applying for an MBA? In the fourth and final part of our live QA series with guest expert Chioma Isiadinso, co-founder of consultancy Expartus and former admissions...