If 243^x*463^y = n, where x and y are positive integers : GMAT Data Sufficiency (DS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 19 Jan 2017, 10:03

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If 243^x*463^y = n, where x and y are positive integers

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 07 Feb 2010
Posts: 159
Followers: 2

Kudos [?]: 552 [2] , given: 101

If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

02 Oct 2010, 03:44
2
This post received
KUDOS
11
This post was
BOOKMARKED
00:00

Difficulty:

55% (hard)

Question Stats:

58% (02:08) correct 42% (01:14) wrong based on 404 sessions

### HideShow timer Statistics

If 243^x*463^y = n, where x and y are positive integers, what is the units digit of n?

(1) x + y = 7

(2) x = 4
[Reveal] Spoiler: OA
Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7079

Kudos [?]: 93182 [6] , given: 10553

Re: equations [#permalink]

### Show Tags

02 Oct 2010, 03:56
6
This post received
KUDOS
Expert's post
6
This post was
BOOKMARKED
If $$243^x*463^y =n$$, where x and y are positive integers, what is the units digit of n?

The units digit of $$243^x$$ is the same as the units digit of $$3^x$$ and similarly the units digit of $$463^y$$ is the same as the units digit of $$3^y$$, so the units digit of $$243^x*463^y$$ equals to the units digit of $$3^x*3^y=3^{x+y}$$. So, knowing the value of $$x+y$$ is sufficient to determine the units digit of $$n$$.

(1) $$x + y = 7$$. Sufficient. (As cyclicity of units digit of $$3$$ in integer power is $$4$$, units digit of $$3^7$$ would be the same as of units digit of $$3^3$$ which is $$7$$)

(2) $$x=4$$. No info about $$y$$. Not sufficient.

Answer: A.

Hope it helps.
_________________
Intern
Joined: 10 Jul 2010
Posts: 44
Followers: 0

Kudos [?]: 4 [0], given: 34

Re: equations [#permalink]

### Show Tags

03 Oct 2010, 08:50
Yup!! A it is....equation can be treated like 3^x*3^y hence (x+y)'s value can provide us the last digit...
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13456
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

10 Sep 2013, 23:57
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Joined: 24 Feb 2014
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 7

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

03 Mar 2014, 04:18
I have a doubt. Cyclicity of unit digit of 3 is 4. Hence we know that every fourth power of 3 (3^4, 3^8, 3^12) will have the same unit digit, 1. Hence when option B says x = 4, knowing that x and y are positive integers, we know that xy will be a multiple of 4. Unit digit of 3^4k is always 1 isn't it? Shouldn't this be sufficient information?

Shouldn't the answer be D?
Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7079

Kudos [?]: 93182 [0], given: 10553

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

03 Mar 2014, 04:21
siriusblack1106 wrote:
I have a doubt. Cyclicity of unit digit of 3 is 4. Hence we know that every fourth power of 3 (3^4, 3^8, 3^12) will have the same unit digit, 1. Hence when option B says x = 4, knowing that x and y are positive integers, we know that xy will be a multiple of 4. Unit digit of 3^4k is always 1 isn't it? Shouldn't this be sufficient information?

Shouldn't the answer be D?

I think you are missing that $$3^x*3^y=3^{x+y}$$, so the exponent is x+y not xy.

Does this make sense?
_________________
Intern
Joined: 24 Feb 2014
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 7

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

03 Mar 2014, 04:26
Yes! Can't believe I just made that mistake. Such mistakes are gonna cost me. :/
Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7079

Kudos [?]: 93182 [0], given: 10553

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

03 Mar 2014, 04:28
siriusblack1106 wrote:
Yes! Can't believe I just made that mistake. Such mistakes are gonna cost me. :/

Yes, careless errors are the #1 cause of score drops on the GMAT! They cause you to miss easier questions, hurting your score a lot more than not know how to solve the harder ones. So, be more careful, before you submit your answer, double-check that it’s the answer to the proper question.
_________________
Manager
Joined: 18 May 2014
Posts: 63
Location: United States
Concentration: General Management, Other
GMAT Date: 07-31-2014
GPA: 3.99
WE: Analyst (Consulting)
Followers: 0

Kudos [?]: 12 [1] , given: 6

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

18 May 2014, 08:53
1
This post received
KUDOS
243 = 3^5

463 ends with a 3. So we have to know how many times we will multiply 3's at the end of each numbers.

1) 7 times - SUF
2) we dont know Y - INSUF

Choose (a)
Senior Manager
Joined: 15 Aug 2013
Posts: 328
Followers: 0

Kudos [?]: 53 [0], given: 23

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

02 Nov 2014, 17:48
Bunuel wrote:
If $$243^x*463^y =n$$, where x and y are positive integers, what is the units digit of n?

The units digit of $$243^x$$ is the same as the units digit of $$3^x$$ and similarly the units digit of $$463^y$$ is the same as the units digit of $$3^y$$, so the units digit of $$243^x*463^y$$ equals to the units digit of $$3^x*3^y=3^{x+y}$$. So, knowing the value of $$x+y$$ is sufficient to determine the units digit of $$n$$.

(1) $$x + y = 7$$. Sufficient. (As cyclicity of units digit of $$3$$ in integer power is $$4$$, units digit of $$3^7$$ would be the same as of units digit of $$3^3$$ which is $$7$$)

(2) $$x=4$$. No info about $$y$$. Not sufficient.

Answer: A.

Hope it helps.

Hi Bunuel,

But surely shouldn't it matter if 3 is raised to 1 and or 6? Meaning, if it's 3^3 + 3^4 = 7 + 1 = 8. But, if its 3^2+3^5 = 9 + 3 = 12, units of 2. Doesn't that yield insufficient?
Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7079

Kudos [?]: 93182 [0], given: 10553

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

03 Nov 2014, 00:50
russ9 wrote:
Bunuel wrote:
If $$243^x*463^y =n$$, where x and y are positive integers, what is the units digit of n?

The units digit of $$243^x$$ is the same as the units digit of $$3^x$$ and similarly the units digit of $$463^y$$ is the same as the units digit of $$3^y$$, so the units digit of $$243^x*463^y$$ equals to the units digit of $$3^x*3^y=3^{x+y}$$. So, knowing the value of $$x+y$$ is sufficient to determine the units digit of $$n$$.

(1) $$x + y = 7$$. Sufficient. (As cyclicity of units digit of $$3$$ in integer power is $$4$$, units digit of $$3^7$$ would be the same as of units digit of $$3^3$$ which is $$7$$)

(2) $$x=4$$. No info about $$y$$. Not sufficient.

Answer: A.

Hope it helps.

Hi Bunuel,

But surely shouldn't it matter if 3 is raised to 1 and or 6? Meaning, if it's 3^3 + 3^4 = 7 + 1 = 8. But, if its 3^2+3^5 = 9 + 3 = 12, units of 2. Doesn't that yield insufficient?

Are you sure you are reading the question correctly? It's 243^x*463^y, 243^x multiplied by 463^y not 243^x + 463^y...
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13456
Followers: 575

Kudos [?]: 163 [0], given: 0

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

05 Jan 2016, 11:15
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Joined: 04 Nov 2015
Posts: 4
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

28 Jul 2016, 14:01
Well I don't agree the answer should be indeed D.
Option 1 suggests x+y=7 this can have multiple x and y combinations like (1,6) (2,5) (4,3) and so on so the units digit of 243^x and 463^y will differ .
Intern
Joined: 17 Mar 2016
Posts: 22
Location: Singapore
GPA: 3.5
WE: Business Development (Energy and Utilities)
Followers: 0

Kudos [?]: 10 [0], given: 30

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

28 Jul 2016, 17:37
sandeep211986 wrote:
Well I don't agree the answer should be indeed D.
Option 1 suggests x+y=7 this can have multiple x and y combinations like (1,6) (2,5) (4,3) and so on so the units digit of 243^x and 463^y will differ .

Hey Buddy,

All the combinations, for x+y=7, will yield the same units digit. Consider the following
x=1,y=6
243*463*463*463*463*463*463 ~~ To find units digit we just need 3^1 * 3^6 = 3^7, i.e 7 (units digit of 2187)

Same goes with other combinations. 3^7 ends up deciding the units digit.

Should the question would have been something like, 245^x * 463^y = n, the combinations of different values of x & y would have yielded different units digits.

Hope that clears
Intern
Status: Fighting Again to bell the CAT
Joined: 28 Aug 2016
Posts: 35
Location: India
GMAT 1: 640 Q49 V30
GMAT 2: 710 Q50 V35
GPA: 3.61
Followers: 0

Kudos [?]: 13 [0], given: 24

If (243) x(463) y = n, where x and y are positive integers, [#permalink]

### Show Tags

20 Dec 2016, 14:06
If (243)^x(463)^y = n, where x and y are positive integers, what is the units digit of n?

(1) x + y = 7

(2) x = 4

Last edited by amandeep_k on 20 Dec 2016, 14:37, edited 1 time in total.
Senior Manager
Joined: 13 Oct 2016
Posts: 286
GPA: 3.98
Followers: 3

Kudos [?]: 68 [0], given: 26

Re: If (243) x(463) y = n, where x and y are positive integers, [#permalink]

### Show Tags

20 Dec 2016, 14:25
amandeep_k wrote:
If (243) x(463) y = n, where x and y are positive integers, what is the units digit of n?

(1) x + y = 7

(2) x = 4

I can't get how the answer can be A.

Had it been $$243^x * 463^y$$. In this case we'll get same base 3 and we can add the powers

$$3^0*3^7$$
$$3^1*3^6$$
$$3^2*3^5$$
...

In each case we'll get $$3^7$$ which units digit we can identify. That that will be sufficient.

But we have 3*x*3*y = 9*x*y which can take any values. Not sufficient. I can't get the idea how answer can be A.

Please correct me if I'm wrong.
Intern
Status: Fighting Again to bell the CAT
Joined: 28 Aug 2016
Posts: 35
Location: India
GMAT 1: 640 Q49 V30
GMAT 2: 710 Q50 V35
GPA: 3.61
Followers: 0

Kudos [?]: 13 [0], given: 24

Re: If (243) x(463) y = n, where x and y are positive integers, [#permalink]

### Show Tags

20 Dec 2016, 14:39
vitaliyGMAT wrote:
amandeep_k wrote:
If (243) x(463) y = n, where x and y are positive integers, what is the units digit of n?

(1) x + y = 7

(2) x = 4

I can't get how the answer can be A.

Had it been $$243^x * 463^y$$. In this case we'll get same base 3 and we can add the powers

$$3^0*3^7$$
$$3^1*3^6$$
$$3^2*3^5$$
...

In each case we'll get $$3^7$$ which units digit we can identify. That that will be sufficient.

But we have 3*x*3*y = 9*x*y which can take any values. Not sufficient. I can't get the idea how answer can be A.

Please correct me if I'm wrong.

Hi, You are right. my question was wrong. Sorry for the inconvenience.
Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7079

Kudos [?]: 93182 [0], given: 10553

Re: If 243^x*463^y = n, where x and y are positive integers [#permalink]

### Show Tags

20 Dec 2016, 22:04
amandeep_k wrote:
If (243)^x(463)^y = n, where x and y are positive integers, what is the units digit of n?

(1) x + y = 7

(2) x = 4

Merging topics. Please search before posting.
_________________
Re: If 243^x*463^y = n, where x and y are positive integers   [#permalink] 20 Dec 2016, 22:04
Similar topics Replies Last post
Similar
Topics:
3 If 243^x*463^y = n, where x and y are positive integers, wha 4 05 Nov 2010, 03:05
12 If x, y, and n are positive integers, is (x/y)^n greater 12 01 Oct 2010, 08:01
5 If (243)^x(463)^y = n, where x and y are positive integers, 8 07 Apr 2010, 22:37
32 If x, y, and z are positive integers, where x > y and 10 15 Nov 2009, 21:47
8 If (243)^x(463)^y = n , where x and y are 14 08 Oct 2009, 00:26
Display posts from previous: Sort by

# If 243^x*463^y = n, where x and y are positive integers

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.