Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If 6^y is a factor of (10!)^2, What is the greatest possible [#permalink]
19 Mar 2012, 22:47

3

This post received KUDOS

Expert's post

essarr wrote:

If 6^y is a factor of (10!)^2, What is the greatest possible value of y ?

A. 2 B. 4 C. 6 D. 8 E. 10

... I was hoping to get a better explanation, as I'm still confused about the explanation provided. Thanks!

6=2*3. Now, there will be obviously less 3's than 2's in (10!)^2, so maximum power of 3 will be limiting factor for maximum power of 6, which is y.

Finding the maximum powers of a prime number 3, in 10!: \frac{10}{3}+\frac{10}{3^2}=3+1=4 (take only quotients into account). So, we have that the maximum power of 3 in 10! is 4, thus maximum power of 3 in (10!)^2 will be 8: (3^4)^2=3^8. As discussed 8 is the maximum power of 6 as well.

Re: If 6^y is a factor of (10!)^2, What is the greatest possible [#permalink]
23 Mar 2012, 01:49

Expert's post

pappueshwar wrote:

hi bunuel,

i did nt understand how did u get 3's more than 2's in 10!.

i am of the view that 10! = 10*9*8*7*6*5*4*3*2*1

if we expand this we get = 2*5*3*3*2*2*2 *7 *3*2* 5* 2*2* 3* 2 *1

so there are 8 2's and 4 3's in the expansion above.

so how to interpret this and proceed

It's: "there will be obviously LESS 3's than 2's in (10!)^2, so maximum power of 3 will be limiting factor for maximum power of 6, which is y." _________________

Re: If 6^y is a factor of (10!)^2, What is the greatest possible [#permalink]
01 Oct 2012, 05:13

Factorial of 10 can be written as 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

or 2 x 5 x 3 x 3 x 2 x 2 x 2 x 7 x 2 x 3 x 5 x 2 x 2 x 3 x 2 x 1

So in 10 factorial we have 08 2's and 4 three's ... Square of 10 factorial will give us 16 2's and 8 three's

to get six we know that we would have to take one 2 and one three ..the maximum number of three's we can take is 8 therefore 8 different 6's can be formed therefore max possible value of y can be 6 ..

2 x 3 2 x 3 2 x 3 2 x 3 2 x 3 2 x 3 2 x 3 2 x 3

D.. _________________

"When you want to succeed as bad as you want to breathe, then you’ll be successful.” - Eric Thomas

Re: If 6^y is a factor of (10!)^2, What is the greatest possible [#permalink]
01 Oct 2012, 05:13

Factorial of 10 can be written as 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

or 2 x 5 x 3 x 3 x 2 x 2 x 2 x 7 x 2 x 3 x 5 x 2 x 2 x 3 x 2 x 1

So in 10 factorial we have 08 2's and 4 three's ... Square of 10 factorial will give us 16 2's and 8 three's

to get six we know that we would have to take one 2 and one three ..the maximum number of three's we can take is 8 therefore 8 different 6's can be formed therefore max possible value of y can be 8 ..

2 x 3 2 x 3 2 x 3 2 x 3 2 x 3 2 x 3 2 x 3 2 x 3

D.. _________________

"When you want to succeed as bad as you want to breathe, then you’ll be successful.” - Eric Thomas

Re: If 6^y is a factor of (10!)^2, What is the greatest possible [#permalink]
09 Jul 2014, 05:52

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

For my Cambridge essay I have to write down by short and long term career objectives as a part of the personal statement. Easy enough I said, done it...