Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
What's wrong if i solve the problem as follows: 3*3x=3*9^y 3x = 9^y [Dividing both side by 3] x = 3^(2y-1) Ans. C. Please help to correct my wrong concept as the OA is E. _________________
What's wrong if i solve the problem as follows: 3*3x=3*9^y 3x = 9^y [Dividing both side by 3] x = 3^(2y-1) Ans. C. Please help to correct my wrong concept as the OA is E.
The point is that \(3*9^y\) does not equal to \(27^y\): \(3*9^y=3*3^{2y}=3^{2y+1}\) on the other hand \(27^y=(3^3)^y=3^{3y}\).
Solution: If 9x = 27^y, which of the following expresses x in terms of y? A. 3^y B. 3^(y-1) C. 3^(2y-1) D. 3^(2y-3) E. 3^(3y-2)
\(9x=3^2*x\) and \(27^y=(3^3)^y=3^{3y}\) --> \(3^2*x=3^{3y}\) --> \(x=\frac{3^{3y}}{3^2}\) --> \(x=3^{3y-2}\).
What's wrong if i solve the problem as follows: 3*3x=3*9^y 3x = 9^y [Dividing both side by 3] x = 3^(2y-1) Ans. C. Please help to correct my wrong concept as the OA is E.
Bunuel has already pointed out your error so I will not repeat it.
Let me give you another method of working out the solution here (though you should ensure that you understand the theory of exponents well)
If 9x = 27^y, which of the following expresses x in terms of y? A. 3^y B. 3^(y-1) C. 3^(2y-1) D. 3^(2y-3) E. 3^(3y-2)
We need x in terms of y. In 9x = (27)^y, put y = 0. You get x = 1/9
Now see which option will give you 1/9 when you put y = 0. I hope you can quickly see that only option (E) will give you x = 1/9 when y = 0. Answer is (E). Such methods work well when you have variables in the options.
Note: If more than one options had given 1/9, you could have tried some other values to choose the right answer out of those options. _________________
Re: If 9x=27^y, which of the following expresses x in terms of y [#permalink]
08 Apr 2012, 21:41
To Karishma,
I'm glad you used the same approach as I've used, but I used y=1, which makes, 9x = 27^y 9x = 27 x = 3. Look for options which give ans. as x=3, I marked A (option E also gives x=3), which gives x=3 which is wrong ans. Can u explain where I'm wrong
Re: If 9x=27^y, which of the following expresses x in terms of y [#permalink]
09 Apr 2012, 04:28
Expert's post
priyalr wrote:
To Karishma,
I'm glad you used the same approach as I've used, but I used y=1, which makes, 9x = 27^y 9x = 27 x = 3. Look for options which give ans. as x=3, I marked A (option E also gives x=3), which gives x=3 which is wrong ans. Can u explain where I'm wrong
Thnx, Priyal
When you put y = 1, three of the five options give you x = 3 (options A, C and E). Any one of these 3 could be the correct answer. You now need to try out some other values of y to get the answer out of these 3 options.
You need to check all the options to ensure that no other options gives you the same value. When I put y = 0, I try it in all the options and only option E gives me 1/9 so I can directly mark that as the answer. This is the reason I mentioned the note in the post above: "Note: If more than one options had given 1/9, you could have tried some other values to choose the right answer out of those options."
So now your next step is to put y = 0 and out of the 3 options, only E will satisfy x = 1/9. Try and put the easiest value first. Easiest value is generally 0, if allowed.
Putting y = 2/3/4... will make it cumbersome. _________________
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...