Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Oct 2014, 16:40

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If a and b are distinct integers and a^b = b^a, how many

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
6 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5350 [6] , given: 165

If a and b are distinct integers and a^b = b^a, how many [#permalink] New post 23 Oct 2010, 05:56
6
This post received
KUDOS
Expert's post
4
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

18% (01:44) correct 82% (01:23) wrong based on 324 sessions
A 700-level question for the GMAT committed souls studying over the weekend.

If a and b are distinct integers and a^b = b^a, how many solutions does the ordered pair (a, b) have?

(A) None
(B) 1
(C) 2
(D) 4
(E) Infinite

Hint: Use logic, not Math. Look for patterns.
[Reveal] Spoiler: OA

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Kaplan GMAT Prep Discount CodesKnewton GMAT Discount CodesManhattan GMAT Discount Codes
Manager
Manager
User avatar
Joined: 07 Oct 2010
Posts: 181
Followers: 5

Kudos [?]: 94 [0], given: 10

Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 07:02
My answer is C

There are only two pairs possible i.e. 2^4 = 4^2 and -2^-4 = -4^-2
you will get it with trial and error method.
_________________

Check this link

http://www.rupeemail.com/rupeemail/invite.do?in=NzYxOTkxJSMlRzF0NGJKQnllT1kzVmRmbTVBb2tLZ1Q4RA==

http://www.rupeemail.com/rupeemail/pages/rupeemail/images/joinImage.gif

CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2794
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 182

Kudos [?]: 986 [0], given: 235

Reviews Badge
Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 07:07
VeritasPrepKarishma wrote:
A 700-level question for the GMAT committed souls studying over the weekend.

Q. If a and b are distinct integers and a^b = b^a, how many solutions does the ordered pair (a, b) have?

(A) None
(B) 1
(C) 2
(D) 4
(E) Infinite

Hint: Use logic, not Math. Look for patterns.


(2,4) and (4,2)

a=1 b=1 and a=2 b=2 also has the solution. But we need distinct. Now when we will increase a>4, b^a increase more rapidly than a^b.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Gmat test review :
670-to-710-a-long-journey-without-destination-still-happy-141642.html

4 KUDOS received
Manager
Manager
User avatar
Joined: 20 Jul 2010
Posts: 52
Followers: 2

Kudos [?]: 30 [4] , given: 51

Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 07:14
4
This post received
KUDOS
My take is:D
(a,b) pairs possible are: (2,4) (4,2) (-2,-4), (-4,-2)

What is the mathematical way rather than number substituation?

Cheers!
Ravi
1 KUDOS received
Manager
Manager
avatar
Joined: 30 Sep 2010
Posts: 59
Followers: 1

Kudos [?]: 29 [1] , given: 0

Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 07:16
1
This post received
KUDOS
D: 4

(2,4), (4,2), (-2,-4) and (-4,-2)
1 KUDOS received
CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2794
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 182

Kudos [?]: 986 [1] , given: 235

Reviews Badge
Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 07:22
1
This post received
KUDOS
:P Oh yes !! I didn't take -ve values.

The answer should be 4 -D
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Gmat test review :
670-to-710-a-long-journey-without-destination-still-happy-141642.html

Senior Manager
Senior Manager
User avatar
Joined: 05 Jul 2010
Posts: 359
Followers: 15

Kudos [?]: 41 [0], given: 17

GMAT ToolKit User
Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 07:43
[strike]Answer is E. Infinite

2^2^2=2^4=4^2
2^2^2^2=2^8=8^2
2^2^2^2^2=4^8=8^4=2^16=16^2
...... so-on

Ofcourse also negatives.[/strike]

I was crazy when I wrote that :p My bad. D is correct.

Posted from my mobile device Image

Last edited by abhicoolmax on 23 Oct 2010, 12:05, edited 2 times in total.
Manager
Manager
avatar
Joined: 11 Jul 2010
Posts: 229
Followers: 1

Kudos [?]: 44 [0], given: 20

GMAT ToolKit User
Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 08:45
2 to power 8 is not equal to 8 to the power 2... its D.... not infinite
Expert Post
5 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5350 [5] , given: 165

Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 14:31
5
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
The answer is indeed D (4 solutions). Good work everyone!

Now for the explanation. I tend to get a little verbose... Bear with me.

Given a^b = b^a and a and b are distinct integers.
First thing that comes to mind is that if we didn't need distinct integers then the answer would have simply been infinite since 1^1 = 1^1, 2^2 = 2^2, 3^3 = 3^3 and so on...
Next, integers include positive and negative numbers. If a result is true for positive a and b, it will also be true for negative a and b and vice versa. The reason for this is that both a and b will be either even or both will be odd because (Even)^{Odd}cannot be equal to (Odd)^{Even}
Also, it is not possible that a is positive while b is negative or vice versa because then one side of the equation will have negative power and the other side will have positive power.

So basically, I need to consider positive integers (I can mirror it on to the negative integers subsequently). Also, I will consider only numbers where a < b because the equation is symmetrical in a and b. So if I get a solution of two distinct such integers (e.g. 2 and 4), it will give me two solutions since a can take 2 or 4 which implies that b will take 4 or 2.

Let me take a look at 0. It cannot be 'a' since it will lead to 0^b = b^0, not possible.
Next, a cannot be 1 either since it will lead to 1^b = b^1, not possible.
Let us consider a = 2. 2^3 < 3^2; 2^4 = 4^2(Got my first solution); 2^5 > 5^2; 2^6 > 6^2 and the difference keeps on widening. This is where pattern recognition comes in the picture. The gap will keep widening.
Now I will consider a = 3. 3^4 > 4^3 (first term itself is greater); 3^5 > 5^3 and the gap keeps widening.
I can try a couple more values but the pattern should be clear by now. 4^5 > 5^4, 5^6 > 6^5 and so on... and as the values keep increasing, the difference in the two terms will keep increasing...

Note: Generally, out of a^b and b^a, the term where the base is smaller will be the bigger term (I am considering only positive integers here.). In very few cases will it be smaller or equal (only in case of a = 1, 2^3 and 2^4).

So I have four solutions (2, 4), (4, 2), (-2, -4) and (-4, -2). This question is pattern recognition based.

Now, we know that if the question did not have the word 'distinct', the answer would have been different, but what if the question did not have the word 'integer'? Would it make a difference? - Something to think about...

(A lot verbose, actually!)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews


Last edited by VeritasPrepKarishma on 03 Jan 2012, 23:56, edited 1 time in total.
Manager
Manager
avatar
Joined: 16 Jun 2010
Posts: 187
Followers: 2

Kudos [?]: 31 [0], given: 5

Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 15:54
Any suggestions on how to be sure that only (2,4) (4,2) and ofcourse the negatives of these solution. I came up with this solution in around 2 mins but spent the next 2 mins confirming that there cannot be other solutions like (3,9) with where a is a square of b or (3,27).
_________________

Please give me kudos, if you like the above post.
Thanks.

Current Student
User avatar
Joined: 15 Jul 2010
Posts: 259
GMAT 1: 750 Q49 V42
Followers: 5

Kudos [?]: 86 [0], given: 65

Re: Try this one - 700 Level, Number Properties [#permalink] New post 23 Oct 2010, 20:33
D

An interesting question that made me think a little.

I found 4 right away, but spent another 2 minutes trying other numbers.

I should have recognized the pattern developing, but it somehow never crossed my mind.
_________________

Consider KUDOS if my post was helpful. :-D

My Debrief: 750-q49v42-105591.html#p825487

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5350 [1] , given: 165

Re: Try this one - 700 Level, Number Properties [#permalink] New post 24 Oct 2010, 15:34
1
This post received
KUDOS
Expert's post
scheol79 - Yes, pattern recognition is a beneficial skill to have on GMAT. It could save you precious time.
nravi549 & devashish - This question tests your logic and pattern recognition skills. Perhaps tests your exposure to number properties. But still, if all you curious people out there are wondering whether we can prove it mathematically, we sure can! But I must warn you, it involves Math beyond the scope of GMAT and hence is irrelevant. Nevertheless, wait for a few mins, I will post it!
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews


Last edited by VeritasPrepKarishma on 24 Oct 2010, 15:54, edited 1 time in total.
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5350 [0], given: 165

Re: Try this one - 700 Level, Number Properties [#permalink] New post 24 Oct 2010, 15:53
Expert's post
We are considering only positive integers where a < b.
It we prove that a^{a+1} > (a+1)^a, I think the rest will follow.

LHS:a^{a+1} = a^a.a^1 = a^a + a^a + a^a ......a times
Here the right hand side of the equation has a terms.

RHS: Using Binomial, (a+1)^a = a^a + aC1.a^{a-1} + aC2.a^{a-2} + aC3.a^{a-3} + ... +1

(a+1)^a = a^a + a^a + a(a-1)/2. a^{a-2} + a(a-1)(a-2)/6. a^{a-3} + ...+1
Note that here the right hand side of the equation has (a+1) terms. The last term of 1 is extra.

Now, if we compare a^a + a^a + a^a ......a times and a^a + a^a + a(a-1)/2. a^{a-2} + a(a-1)(a-2)/6. a^{a-3} + ...+1 term by term, first two terms are the same but every subsequent term of the second expression is less than the corresponding term of the first expression.

Then why doesn't it work for 2? That is because the comparison in case of 2 looks like this:
2^2 + 2^2is compared with 2^2 + 2^2 + 1
The first two terms, as we said before, are anyway equal but the second expression has an extra term of 1. Hence the second expression is greater.

In case of 3 and greater integers, 3^3 + 3^3 + 3^3 is compared with 3^3 + 3^3 + 3.2/2.3^1 + 1
The extra term of 1 cannot make up for the deficit of the third term. Hence, as the numbers keep increasing, the gap will keep getting wider!

Note: This Math is beyond the scope of GMAT.

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

5 KUDOS received
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 807
Location: London
Followers: 76

Kudos [?]: 501 [5] , given: 25

GMAT ToolKit User Reviews Badge
Re: Try this one - 700 Level, Number Properties [#permalink] New post 24 Oct 2010, 15:56
5
This post received
KUDOS
I think I can prove this mathematically without using binomial theorem or any higher level math. Let mw know what you think :

Mathematical Proof

a^b=b^a
without loss of generality, I assume a>b. therefore, a=b^{a/b}

Also it is easy to see any solution (a,b) has to be either both positive integers or both negative (Otherwise one side will become fractional with abs value less than 1, and the other side will have an abs value>1)

Assume for the moment, a,b>0
Since a and b are integers, a>b, (a/b)>1. For b^{a/b} to be an integer, a/b must be an integer. Thus in all cases, a has to be a multiple of b whenever this equation has a solution. Let a=kb, where k is an integer, such that k cannot be 1, since in that case a=b which is not allowed
Hence, kb=b^k
b^k-bk=0
b(b^{k-1}-k)=0
Either b=0 OR b=k^{\frac{1}{k-1}}
b=0 implies a=kb=0. Hence it is an invalid solution.

Thus only solutions are given by b=k^{\frac{1}{k-1}}
Clearly for k=2, this is an integer b=2^1=2 & a=bk=4
For any higher k, this is not an integer :
k=3, b=3^(1/2)
k=4, b=4^(1/3)
k=5, b=5^(1/4)
.. and so on ... which always gives irrational values of b which are not permitted

Hence only solution (positive) is b=2,a=4

Now notice that if (a,b) is a solution then (-a,-b) is also always a solution as long as both a and b are either odd or both are even which is the case here.

Hence b=-2,a=-4 is also a solution

By symmetry the pairs b=4,a=2 & b=-4,a=-2 are also solutions

Hence overall there are four pairs of solutions. And we have proved there can be no more feasible solutions
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4875
Location: Pune, India
Followers: 1152

Kudos [?]: 5350 [0], given: 165

Re: Try this one - 700 Level, Number Properties [#permalink] New post 24 Oct 2010, 17:51
Expert's post
That is an absolutely solid proof, in my opinion. Kudos for the very good work shrouded1.
Anyone else would like to take a shot at proving it mathematically in a different way? Try it!

Note: The discussion of the proof here is for intellectual stimulation only. Please do not get lost in the mathematics if it doesn't interest you. The takeaway from the question is pattern recognition.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 340
Followers: 3

Kudos [?]: 156 [1] , given: 136

If a and b are distinct integers and a^b = b^a [#permalink] New post 26 Apr 2013, 22:03
1
This post received
KUDOS
Question: If a and b are distinct integers and a^b = b^a, how many solutions does the ordered pair (a, b) have?

(A) None
(B) 1
(C) 2
(D) 4
(E) Infinite

Hi Experts,
I'm stumped by this question, and have seen quite a few questions that usually test understanding of exponential questions. From the first impression of this question, I found that this question will test positive,negative, 0, even, odd every possibility. Can someone please post a detailed solution of this.

Thanks
_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Intern
Intern
avatar
Joined: 14 Feb 2013
Posts: 33
Schools: Duke '16
Followers: 0

Kudos [?]: 13 [0], given: 14

Re: If a and b are distinct integers and a^b = b^a [#permalink] New post 27 Apr 2013, 00:26
i could only get one solution - 2^4 equals 4^2

Someone please explain the solution to this..
_________________

Consider giving +1 Kudo :) when my post helps you.
Also, Good Questions deserve Kudos..!

1 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 113

Kudos [?]: 1191 [1] , given: 219

GMAT ToolKit User
Re: If a and b are distinct integers and a^b = b^a [#permalink] New post 27 Apr 2013, 00:31
1
This post received
KUDOS
karishmatandon wrote:
i could only get one solution - 2^4 + 4^2

Someone please explain the solution to this..


We are looking for values of a, b such that a^b=b^a, those values have to be different (a=1, b=1 will not count for example)

One combination as you say is (2,4), but because the order does matter this values give us 2 pairs (2,4) (4,2)
2^4=4^2 or 16=16

The other pair of values that respect that condition is -2,-4 so other 2 possible solutions here : (-2,-4) and (-4,-2)
(-2)^-^4=(-4)^-^2 or \frac{1}{16}=\frac{1}{16}

So 4 possible solutions: D

Hope it's clear, let me know
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Intern
Intern
avatar
Joined: 14 Feb 2013
Posts: 33
Schools: Duke '16
Followers: 0

Kudos [?]: 13 [0], given: 14

Re: If a and b are distinct integers and a^b = b^a [#permalink] New post 27 Apr 2013, 00:36
Zarrolou wrote:
karishmatandon wrote:
i could only get one solution - 2^4 + 4^2

Someone please explain the solution to this..


We are looking for values of a, b such that a^b=b^a, those values have to be different (a=1, b=1 will not count for example)

One combination as you say is (2,4), but because the order does matter this values give us 2 pairs (2,4) (4,2)
2^4=4^2 or 16=16

The other pair of values that respect that condition is -2,-4 so other 2 possible solutions here : (-2,-4) and (-4,-2)
(-2)^-^4=(-4)^-^2 or \frac{1}{16}=\frac{1}{16}

So 4 possible solutions: D

Hope it's clear, let me know


Yeah..it is clear..
Thnks :-D
_________________

Consider giving +1 Kudo :) when my post helps you.
Also, Good Questions deserve Kudos..!

Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 340
Followers: 3

Kudos [?]: 156 [0], given: 136

Re: If a and b are distinct integers and a^b = b^a [#permalink] New post 27 Apr 2013, 02:26
Hi Zarrolou,

Would you mind giving a shot on this one with an algebraic/graphical way.. :)

Regards,
H
_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Re: If a and b are distinct integers and a^b = b^a   [#permalink] 27 Apr 2013, 02:26
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic Is a^b > b^a? fozzzy 3 20 May 2013, 22:31
1 Experts publish their posts in the topic How many distinct integers are factors of 90? guerrero25 2 11 Feb 2013, 00:26
1 If A and B are nonzero integers, is A^B an integer? (1) B^A Yalephd 3 28 Apr 2011, 17:15
4 Experts publish their posts in the topic a is an odd integer and a <>-b Is a^2/|b+a| > a-b ? nades09 7 26 Nov 2010, 19:07
What is the sum of the integers A and B? 1. A=-/B/ 2.B=-/A rlevochkin 12 21 Jan 2006, 21:52
Display posts from previous: Sort by

If a and b are distinct integers and a^b = b^a, how many

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 25 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.