Find all School-related info fast with the new School-Specific MBA Forum

It is currently 28 May 2016, 15:13
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If a and b are positive integers such that a < b, is b even?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Current Student
User avatar
Joined: 27 Jun 2012
Posts: 418
Concentration: Strategy, Finance
Followers: 68

Kudos [?]: 639 [1] , given: 183

If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 17 Dec 2012, 23:57
1
This post received
KUDOS
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

65% (02:09) correct 35% (01:07) wrong based on 187 sessions

HideShow timer Statistics

If a and b are positive integers such that a < b, is b even?

(1) \(\frac{b}{2}-\frac{a}{2}\) is an integer.

(2) \(\frac{3b}{4}-\frac{a}{2}\) is an integer.
[Reveal] Spoiler: OA

_________________

Thanks,
Prashant Ponde

Tough 700+ Level RCs: Passage1 | Passage2 | Passage3 | Passage4 | Passage5 | Passage6 | Passage7
Reading Comprehension notes: Click here
VOTE: vote-best-gmat-practice-tests-excluding-gmatprep-144859.html
PowerScore CR Bible - Official Guide 13 Questions Set Mapped: Click here


Last edited by Bunuel on 18 Dec 2012, 02:19, edited 1 time in total.
Edited tags.
Expert Post
5 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33055
Followers: 5770

Kudos [?]: 70718 [5] , given: 9856

Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 18 Dec 2012, 02:24
5
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
If a and b are positive integers such that a < b, is b even?

(1) \(\frac{b}{2}-\frac{a}{2}\) is an integer --> \(\frac{b}{2}-\frac{a}{2}=integer\) --> \(b-a=2*integer=even\). From \(b-a=even\) it follows that either both a and b are even or both odd. Not sufficient.

(2) \(\frac{3b}{4}-\frac{a}{2}\) is an integer --> \(\frac{3b}{4}-\frac{a}{2}=integer\) --> \(3b-2a=4*integer=even\). Since \(2a=even\), then we have that \(3b-even=even\) --> \(3b=even\) --> \(b=even\). Sufficient.

Answer: B.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

2 KUDOS received
Manager
Manager
User avatar
Joined: 08 Apr 2012
Posts: 129
Followers: 11

Kudos [?]: 83 [2] , given: 14

Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 18 Dec 2012, 00:23
2
This post received
KUDOS
PraPon wrote:
If a and b are positive integers such that a < b, is b even?

(1) \(\frac{b}{2}-\frac{a}{2}\) is an integer.

(2) \(\frac{3b}{4}-\frac{a}{2}\) is an integer.


We know that a, b are positive integers and that a<b

(1) --> b/2 - a/2 is integer. This means BOTH a, b are either Even or ODD.

Ex: a=1, b=3 ==> (b-a)/2 = 1 (Integer) (b is odd)
Also, when a=2, b=4 ==> (b-a)/2 = 1 (Integer) (b is even)
Not sufficient

(2) --> 3b/4 - a/2 is an integer.

This can be written as (3b-2a)/4 is an integer

Again both 3b and 2a need to be BOTH together even or odd for the expression to be an integer and the difference must be a multiple of 4.

But, 2a is always even. This means 3b needs to be even as well. 3xEven = Even. So b is even.

Answer is B.
_________________

Shouvik
http://www.Edvento.com
admin@edvento.com

Expert Post
VP
VP
User avatar
Status: Been a long time guys...
Joined: 03 Feb 2011
Posts: 1420
Location: United States (NY)
Concentration: Finance, Marketing
GPA: 3.75
Followers: 165

Kudos [?]: 1067 [0], given: 62

GMAT ToolKit User Premium Member
Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 18 Dec 2012, 00:33
Expert's post
PraPon wrote:
If a and b are positive integers such that a < b, is b even?

(1) \(\frac{b}{2}-\frac{a}{2}\) is an integer.

(2) \(\frac{3b}{4}-\frac{a}{2}\) is an integer.


Statement 1 leads us to two possibilities:
i) either the two i.e.\(a/2\) and \(b/2\) are of the form x.5 AND y.5 respectively
ii) both of them to be integers.

Both of these possibilities lead us to the integer form. So B CAN be even and CANNOT be even.

Statement 2- We have to keep in mind that a and b are integers. Hence \(3b/4\) can only be an integer or of the form x.75 or x.25
Since (xx.75 or xx.25)-yy.5 CANNOT be an integer, therefore B has to be an integer such that \(3b/4\) is an integer. For that to happen, B has to be a multiple of 4.
The only possibility when 3b/4 falls in the form of xx.5 is when B is an even integer.

OR

\(a/2\) can only be either entirely an integer or of the form yy.5. So in such cases, \(3b/4 - a/2\) will be an integer ONLY when b is an even integer.

Hence B.
_________________

Prepositional Phrases Clarified|Elimination of BEING| Absolute Phrases Clarified
Rules For Posting
www.Univ-Scholarships.com

Current Student
User avatar
Joined: 27 Jun 2012
Posts: 418
Concentration: Strategy, Finance
Followers: 68

Kudos [?]: 639 [0], given: 183

Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 18 Dec 2012, 09:39
Nothing can be simpler than Bunuel's explanation!! Thanks Bunuel!!

I pretty much didn't like Manhattan GMAT's explanation. I guess it was too lengthy and convoluted.

Manhattan GMAT explanation:-
For this yes/no question, or goal is to try to find a definitive answer: either b is always even or b is always something other than even (odd or a fraction / decimal). If b is even only some of the time, then that information would be insufficient to answer the question.

This is also a theory question; on such questions, we can try numbers or we can use theory. We can also test some numbers initially in order to help ourselves figure out or understand the theory more thoroughly and then use theory to help guide us through the rest of the problem.

(1) INSUFFICIENT: We can test cases here to get started. First, let’s test the case where both a and b are even.
If b = 4 and a = 2, then b/2-a/2=2-1=1. This makes sense using theory: we know that dividing an even integer by 2 will result in another integer. The variables a and b are both integers, so dividing each one by two will also yield integers, and one integer minus another integer will yield a third integer. Using both real numbers and theory, we have proved that the result will be an integer, so it’s possible for b to be even.

Could b also be odd? Dividing an odd number by 2 yields some integer followed by the decimal 0.5 (for example 3/2 = 1.5). If we subtract one x.5 number from another, we’ll still get an integer. For instance, if b = 5 and a = 3, then b/2-a/2 = 2.5 – 1.5 = 1. It’s also possible, then, for b to be odd. Since b can be either even or odd, this statement is not sufficient.

We have also now picked up something useful about the theory: an integer minus an integer will yield another integer. A non-integer minus another non-integer with the same decimal value (e.g., 2.5 – 1.5) will also yield an integer.

(2) SUFFICIENT: We’re going to test even and odd cases here again. We already determined during statement 1 that a/2 will be an integer if a is even. What would need to be true in order for 3b/4 to be an integer as well? The value of b would have to be some multiple of 4 (in order to “cancel out” the 4 on the bottom of the fraction). We can try the same numbers we tried last time: b = 4 and a = 2.
In this case, 3b/4-a/2 = 3 – 1 = 2. It’s possible, then, for b to be even.

Can b be odd? There are two possible cases to test: odd b and odd a, or odd b and even a. An even value for a will result in an integer for a/2; for this to make statement 2 true, we would need 3b/4 to be an integer as well. 3b/4 will never result in an integer when b is odd, however, because an odd divided by an even will never be an integer. For example, if b = 5 and a = 2, then 3b/4-a/2 = 15/4 – 1 = not an integer. We can dismiss the case where a is even and b is odd.

What about the case where both a and b are odd? If a is odd, then a/2 will be some number ending in 0.5. Can we make 3b/4 also end in 0.5, so that we’ll get an integer when subtracting the two? Let's try some odd positive integer possibilities for b: 3b/4 could equal 3/4, 9/4, 15/4, and so on, or the decimal equivalents 0.75, 2.25, 3.75, and so on. The pattern here alternates between 0.75 and 0.25; we cannot get 0.5. We can’t, then, get an integer value for 3b/4-a/2 as long as b is odd.

The correct answer is B.
_________________

Thanks,
Prashant Ponde

Tough 700+ Level RCs: Passage1 | Passage2 | Passage3 | Passage4 | Passage5 | Passage6 | Passage7
Reading Comprehension notes: Click here
VOTE: vote-best-gmat-practice-tests-excluding-gmatprep-144859.html
PowerScore CR Bible - Official Guide 13 Questions Set Mapped: Click here

Expert Post
Moderator
Moderator
User avatar
Joined: 01 Sep 2010
Posts: 2878
Followers: 656

Kudos [?]: 5191 [0], given: 884

Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 18 Dec 2012, 10:35
Expert's post
Bunuel wrote:
If a and b are positive integers such that a < b, is b even?

(1) \(\frac{b}{2}-\frac{a}{2}\) is an integer --> \(\frac{b}{2}-\frac{a}{2}=integer\) --> \(b-a=2*integer=even\). From \(b-a=even\) it follows that either both a and b are even or both odd. Not sufficient.

(2) \(\frac{3b}{4}-\frac{a}{2}\) is an integer --> \(\frac{3b}{4}-\frac{a}{2}=integer\) --> \(3b-2a=4*integer=even\). Since \(2a=even\), then we have that \(3b-even=even\) --> \(3b=even\) --> \(b=even\). Sufficient.

Answer: B.



Straight the same reasoning. Good :)
_________________

COLLECTION OF QUESTIONS AND RESOURCES
Quant: 1. ALL GMATPrep questions Quant/Verbal 2. Bunuel Signature Collection - The Next Generation 3. Bunuel Signature Collection ALL-IN-ONE WITH SOLUTIONS 4. Veritas Prep Blog PDF Version 5. MGMAT Study Hall Thursdays with Ron Quant Videos
Verbal:1. Verbal question bank and directories by Carcass 2. MGMAT Study Hall Thursdays with Ron Verbal Videos 3. Critical Reasoning_Oldy but goldy question banks 4. Sentence Correction_Oldy but goldy question banks 5. Reading-comprehension_Oldy but goldy question banks

Intern
Intern
avatar
Joined: 17 Nov 2011
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 4

If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 22 Mar 2013, 15:27
If a and b are positive integers such that a < b, is b even?

(1) B/2- A/2 is an integer.

(2) 3*B/4 - A/2 is an integer
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 33055
Followers: 5770

Kudos [?]: 70718 [0], given: 9856

Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 22 Mar 2013, 15:30
Expert's post
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1123
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 169

Kudos [?]: 1699 [0], given: 219

GMAT ToolKit User
Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 22 Mar 2013, 15:34
freespiritfox wrote:
If a and b are positive integers such that a < b, is b even?

(1) B/2- A/2 is an integer.

(2) 3*B/4 - A/2 is an integer


(1) B/2- A/2 is an integer.
\(B/2- A/2=i\)
\(B- A=2i\) 2i is even and can be obtained as Even-Even or Odd-Odd so 1 is not sufficient

(2) 3*B/4 - A/2 is an integer
\(3*B/4 - A/2=i\)
\(3*B - 2A= 4i\)
4i is even and can be obtained as Even-Even or Odd-Odd.
Now consider that the second term is even (2A) so the other must be even also.
So, 3*B is even; can we say that B is also even?
The answer is yes, because Even = Odd*Even = 3(odd)*B(even)

So 2 is sufficient
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 9666
Followers: 465

Kudos [?]: 120 [0], given: 0

Premium Member
Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 14 Sep 2014, 15:28
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 9666
Followers: 465

Kudos [?]: 120 [0], given: 0

Premium Member
Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 06 Nov 2015, 11:58
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Expert Post
Math Revolution GMAT Instructor
User avatar
Joined: 16 Aug 2015
Posts: 1205
GPA: 3.82
Followers: 72

Kudos [?]: 565 [0], given: 0

Premium Member
Re: If a and b are positive integers such that a < b, is b even? [#permalink]

Show Tags

New post 10 Nov 2015, 11:03
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If a and b are positive integers such that a < b, is b even?

(1) b2 −a2 is an integer.

(2) 3b4 −a2 is an integer.

There are 2 variables (a,b) and 2 equations are given from the 2 conditions, so there is high chance (C) will be our answer.
Looking at the conditions,
Condition 1) b-a=2int=2int=even
Condition 2) 3b-2a=4int=even
As 2a=even, 3b-even=even and 3b=even, b=even, a=even. This answers the question 'yes' so this is sufficient and (C) seems to be the answer, but this is a commonly made mistake;
Looking at condition 1 again, b-a=even, so the question is answered 'yes' if b=4, a=2, but 'no' when b=3, a=1. So this is insufficient.
Looking at condition 2, 3b-2a=even, 3b=even-2a=even-even=even b=even. This answers the question 'yes' so this is sufficient. The answer is therefore (B).

For cases where we need 2 more equation, such as original conditions with “2 variables”, or “3 variables and 1 equation”, or “4 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 70% chance that C is the answer, while E has 25% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, D or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Re: If a and b are positive integers such that a < b, is b even?   [#permalink] 10 Nov 2015, 11:03
    Similar topics Author Replies Last post
Similar
Topics:
1 Experts publish their posts in the topic If A and B are positive integers, is A – B even? robu 1 31 Mar 2016, 10:18
1 Experts publish their posts in the topic If b is an even integer is b < 0? audiogal101 5 23 Nov 2013, 11:28
7 Experts publish their posts in the topic If A and B are positive integers, is the product AB even? Bunuel 5 03 Sep 2012, 06:06
5 Experts publish their posts in the topic If a and b are integers, is b even? jakolik 8 16 Aug 2010, 06:57
19 Experts publish their posts in the topic If a, b, and c are positive integers, with a < b < c, SMAbbas 19 22 Oct 2009, 23:27
Display posts from previous: Sort by

If a and b are positive integers such that a < b, is b even?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.