Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

a = 1. Does not tell anything about b --therefore is insufficient on its own to answer the question.

Statement 2

b = 2

2a + 1 + b becomes

2a (even) + 1 (odd) + b (even) = ODD. So the exponent to 4 is ODD. So I understand that if we put 3, 5 etc I get the remainder 4, but why can't I put exponent as 1 as 1 is ODD too. Can you please help?

So all even exponents have 6 in unit place, and all off exponents have 4 in unit place. To solve the problem we need to find whether the 2a + 1 + b is even or odd

As a is +ve integer, 2a is always even. 2a + 1 will be odd. Now to determine whether (2a + 1 + b) is even or odd, we need to know only b.

If a and b are positive integers, what is the remainder when \(4^{2a+1+b}\) is divided by 10?

This is a classic "C trap" question: "C trap" is a problem which is VERY OBVIOUSLY sufficient if both statements are taken together. When you see such question you should be extremely cautious when choosing C for an answer.

Back to the question: 4 in positive integer power can have only 2 last digits: 4, when the power is odd or 6 when the power is even. Hence, to get the remainder of 4^x/10 we should know whether the power is odd or even: if it's odd the remainder will be 4 and if it's even the remainder will be 6.

(1) a = 1 --> \(4^{2a+1+b}=4^{3+b}\) depending on b the power can be even or odd. Not sufficient.

(2) b = 2 --> \(4^{2a+1+b}=4^{2a+3}=4^{even+odd}=4^{odd}\) --> the remainder upon division of \(4^{odd}\) by 10 is 4. Sufficient.

Answer: B.

enigma123 wrote:

2a (even) + 1 (odd) + b (even) = ODD. So the exponent to 4 is ODD. So I understand that if we put 3, 5 etc I get the remainder 4, but why can't I put exponent as 1 as 1 is ODD too. Can you please help?

The power of 4 is \(2a+3\) and since \(a\) is a positive integer then the lowest value of \(2a+3\) is 5, for \(a=1\). Next, even if the power were 1 then 4^1=4 and the remainder upon division of 4 by 10 would still be 4.

Re: If a and b are positive integers, what is the remainder when [#permalink]

Show Tags

11 Aug 2013, 09:20

REM(4^(2a+1+b))/10

Means we have to find last digit of the expression.So rephrasing the question

What is the last digit of 4^(2a+1+b)

(1). a=1

Break the expression as 4^2a * 4^1 * 4^b.

b is unknown hence INSUFFICIENT

(2).

b=2

4^2a * 4^1 * 4^b.

If you can observe the expression 4^2a, you will see that this will always give last digit as '6' you can try out numbers if you want.

So knowing the expression and value of b last digit can be calculated and hence the remainder can also be calculated.

Hence (B) it is !!
_________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Re: If a and b are positive integers, what is the remainder when [#permalink]

Show Tags

30 Aug 2014, 05:22

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If a and b are positive integers, what is the remainder when [#permalink]

Show Tags

02 Sep 2015, 10:11

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and equations ensures a solution.

If a and b are positive integers, what is the remainder when 4 2a+1+b is divided by 10?

(1) a = 1 (2) b = 2

Transforming the original condition and the question, 4^(2a+1+b)=(4^2a)(4^(1+b))=(16^a)(4^(1+b))=(.......6)(4^(1+b)), because the first digit is always 6 when it's multiplied by 6. Since b is all we need to know, the answer is B.
_________________

After days of waiting, sharing the tension with other applicants in forums, coming up with different theories about invites patterns, and, overall, refreshing my inbox every five minutes to...

I was totally freaking out. Apparently, most of the HBS invites were already sent and I didn’t get one. However, there are still some to come out on...

In early 2012, when I was working as a biomedical researcher at the National Institutes of Health , I decided that I wanted to get an MBA and make the...