Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A humble request: I think there is a separate section for GMAT Club tests. There you can find the already discussed questions too.

Now coming to the problem. 1 is clearly insufficient. 2 is sufficient. No combination can be found in which \((a/b)/c\) is an integer provided \(a= b + c\) & \(a, b, c\) are distinct.
_________________

If a, b, and c are positive distinct integers, is (a/b)/c an integer? 1. c=2 2. a = b+c

First of all \(\frac{\frac{a}{b}}{c}=\frac{a}{bc}\). So the question becomes is \(\frac{a}{bc}=integer\) true?

(1) \(c=2\) --> is \(\frac{a}{2b}=integer\). Clearly insufficient. If \(a=1\), then answer is NO, but if \(a=4\) and \(b=1\), then the answer is YES.

(2) \(a=b+c\) --> \(\frac{a}{bc}=\frac{b+c}{bc}=\frac{b}{bc}+\frac{c}{bc}=\frac{1}{c}+\frac{1}{b}\). As \(b\) and \(c\) are distinct integers then \(\frac{1}{c}+\frac{1}{b}\) won't be an integer. Sufficient. (Side note: if \(b\) and \(c\) were not distinct integers then \(\frac{1}{c}+\frac{1}{b}\) could be an integer in the following cases: \(b=c=1\) and \(b=c=2\)).

Re: If a, b, and c are positive distinct integers, is (a/b)/c an [#permalink]

Show Tags

07 Nov 2012, 19:37

Bunuel,

Stupid question. But....

When I see the question: Is a/bc = Integer. My mind immediately multiplies the equation by bc on both sides and comes up with a new question...

Is a = (integer) (bc)

since both b and c are distinct integers and thus bc will be an integer, the question is asking if a = integer.

If this is accurate, then isn't option B a straightforward Yes? If A = B +C, then A is just an addition of two distinct integers, making A itself an integer, answering the original question.

When I see the question: Is a/bc = Integer. My mind immediately multiplies the equation by bc on both sides and comes up with a new question...

Is a = (integer) (bc)

since both b and c are distinct integers and thus bc will be an integer, the question is asking if a = integer.

If this is accurate, then isn't option B a straightforward Yes? If A = B +C, then A is just an addition of two distinct integers, making A itself an integer, answering the original question.

Can you help point out where I went wrong?

Thanks.

If the question could be rephrased as "is \(a\) an integer", then we wouldn't need any statement to answer the question, since the stem directly says that \(a\) is an integer.

The question asks whether \(\frac{a}{bc}\) is an integer or whether \(a\) is a multiple of \(bc\).

If a, b, and c are positive distinct integers, is (a/b)/c an integer? 1. c=2 2. a = b+c

First of all \(\frac{\frac{a}{b}}{c}=\frac{a}{bc}\). So the question becomes is \(\frac{a}{bc}=integer\) true?

(1) \(c=2\) --> is \(\frac{a}{2b}=integer\). Clearly insufficient. If \(a=1\), then answer is NO, but if \(a=4\) and \(b=1\), then the answer is YES.

(2) \(a=b+c\) --> \(\frac{a}{bc}=\frac{b+c}{bc}=\frac{b}{bc}+\frac{c}{bc}=\frac{1}{c}+\frac{1}{b}\). As \(b\) and \(c\) are distinct integers then \(\frac{1}{c}+\frac{1}{b}\) won't be an integer. Sufficient. (Side note: if \(b\) and \(c\) were not distinct integers then \(\frac{1}{c}+\frac{1}{b}\) could be an integer in the following cases: \(b=c=1\) and \(b=c=2\)).

Answer: B.

Hope it helps.

Thanks for the response. I also chose B but took over 3 minutes because I kept checking to see whether there might be a situation in which the reciprocals of 2 distinct integers can add up to produce an integer. Wondering if there is a mathematical concept / theory that can prove this will never be the case? I know it's unnecessary but will help strengthen our understanding of how reciprocals of positive integers function.

One thing that I can think of: 1.Imagine a number line with 0, 1, 2 and so on. Now both the reciprocals of positive integers a and b will lie between 0 and 1 (inclusive) - no other form is possible given that a and b are positive integers (don't think about distinct integers just yet) 2. Now if the sum of these two fractions (1/a and 1/b) must be an integer there are two possibilities - either a. they sum up to 1 or b. they sum up to 2 -The MAXIMUM value of 1/a or 1/b is 1 - so the maximum sum is 1+1 or 2 (to maximize 1/a we must minimize a, which is a positive integer and 1 is the smallest positive integer) 3. The question now becomes can 1/a+1/b be 1 or 2 with a and be being DIFFERENT integers a. Sum of 1 - this is only possible at 1/2 and 1/2 as no other fraction can be written of the form 1/integer and summed up to add 1 --> my question to the group is - can this be theorized? b. Sum of 2 - this is only possible at 1 and 1 as no 2 fractions between 0 and 1 can be summed up to give you 2 (test extreme case 0.999+0.998 = 1.997 which is less than 2)

Re: If a, b, and c are positive distinct integers, is (a/b)/c an [#permalink]

Show Tags

05 Oct 2015, 16:31

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...