Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Last edited by Bunuel on 17 Mar 2013, 00:37, edited 1 time in total.

Statement (1) : Tells the sign of (C) means sufficient.

Statement (2) : a+b < 0

=> a < -b

a b a<-b Is a>b? + + Not Poss N/A - - Yes No - + Yes No + - Yes No

Why the answer is not (D).

Please tell what I am missing above

Rgds, TGC _________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Re: If (a-b)/c<0, is a>b? [#permalink]
17 Mar 2013, 00:53

1

This post received KUDOS

Expert's post

If (a-b)/c<0, is a>b?

(1) c < 0. Multiply (a-b)/c<0 by negative c and flip the sign a-b>0 --> a>b. Sufficient.

(2) a + b < 0. The sum of two numbers is less than zero. Can we tell which of them is greater? (Can we tell whether a>b or a<b?) No, consider a=1, b=-2 and c=-1 AND a=-2, b=1 and c=1. Not sufficient.

Statement (1) : Tells the sign of (C) means sufficient.

Statement (2) : a+b < 0

=> a < -b

a b a<-b Is a>b? + + Not Poss N/A - - Yes No - + Yes No + - Yes No

Why the answer is not (D).

Please tell what I am missing above

Rgds, TGC

Consider one of the cases in your approach above: if both a and b are negative, it's possible that a>b as well as a<b. For example, a=-1, b=-2, and c=-1 AND a=-2, b=-1, and c=1.

Hope it helps.

Why to take c variable in picture .

Given that a<-b I think appropriate would be a = -1 b = -2 (here a>b still holding a<-b)

a = -2 b = -1 (here a <b still holding a<-b)

Hence,wrong

Hi TGC good to see you back on the forums..........people gather courage from life's storms.

I think the process you suggested is correct and has got no flaws in it....its concise...i do not find any use of third variable here.

Re: If (a-b)/c<0, is a>b? [#permalink]
17 Mar 2013, 00:46

Before cross multiplying or multiplying numerator and denominator by c you should keep in mind that c should not be equal to 0 So which statement proves c won't be 0 (1) c < 0 This statement implies that c is not equal to 0 (2) a + b < 0 You aren't sure whether c would be 0 or not. Hence, the answer should be A

Re: If (a-b)/c<0, is a>b? [#permalink]
17 Mar 2013, 06:14

Bunuel wrote:

If (a-b)/c<0, is a>b?

(1) c < 0. Multiply (a-b)/c<0 by negative c and flip the sign a-b>0 --> a>b. Sufficient.

(2) a + b < 0. The sum of two numbers is less than zero. Can we tell which of them is greater? (Can we tell whether a>b or a<b?) No, consider a=1, b=-2 and c=-1 AND a=-2, b=1 and c=1. Not sufficient.

Answer: A.

What is wrong in the solution that I gave?

Rgds, TGC _________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Statement (1) : Tells the sign of (C) means sufficient.

Statement (2) : a+b < 0

=> a < -b

a b a<-b Is a>b? + + Not Poss N/A - - Yes No - + Yes No + - Yes No

Why the answer is not (D).

Please tell what I am missing above

Rgds, TGC

Consider one of the cases in your approach above: if both a and b are negative, it's possible that a>b as well as a<b. For example, a=-1, b=-2, and c=-1 AND a=-2, b=-1, and c=1.

Statement (1) : Tells the sign of (C) means sufficient.

Statement (2) : a+b < 0

=> a < -b

a b a<-b Is a>b? + + Not Poss N/A - - Yes No - + Yes No + - Yes No

Why the answer is not (D).

Please tell what I am missing above

Rgds, TGC

Consider one of the cases in your approach above: if both a and b are negative, it's possible that a>b as well as a<b. For example, a=-1, b=-2, and c=-1 AND a=-2, b=-1, and c=1.

Hope it helps.

Why to take c variable in picture .

Given that a<-b I think appropriate would be a = -1 b = -2 (here a>b still holding a<-b)

a = -2 b = -1 (here a <b still holding a<-b)

Hence,wrong _________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Hey everyone, today’s post focuses on the interview process. As I get ready for interviews at Kellogg and Tuck (and TheEngineerMBA ramps up for his HBS... ...

I got invited to interview at Sloan! The date is October 31st. So, with my Kellogg interview scheduled for this Wednesday morning, and my MIT Sloan interview scheduled...

Not all good communicators are leaders, but all leaders are good communicators. Communication is an essential tool that leaders need to use in order to get anything done. Almost...

Despite being a long weekend with Thanksgiving, this week was very tiring for me in various ways. Besides the pressure of learning materials I am not familiar with such...