Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 May 2015, 14:44

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Director
Director
avatar
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 552
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V40
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 22

Kudos [?]: 1039 [1] , given: 217

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 09 Jan 2012, 20:58
1
This post received
KUDOS
5
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

66% (01:53) correct 34% (01:20) wrong based on 265 sessions
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 36, 0.72, and 3.005 are terminating decimals.

If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?

(1) a > c
(2) b > d
[Reveal] Spoiler: OA

_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Manager
Manager
avatar
Joined: 18 Dec 2011
Posts: 105
Followers: 0

Kudos [?]: 20 [0], given: 113

Re: Terminating Decimal [#permalink] New post 09 Jan 2012, 22:16
IMO B, explanation:

p/q= 2^(a-c)3^(b-d)/ 5^e

For p/q to be a terminating decimal, b should be greater than or equal to 0, hence b greater than d ie 2 is sufficient.
1 KUDOS received
Intern
Intern
avatar
Joined: 07 Jan 2012
Posts: 7
Location: United States
WE: Marketing (Other)
Followers: 0

Kudos [?]: 6 [1] , given: 0

Re: Terminating Decimal [#permalink] New post 09 Jan 2012, 22:32
1
This post received
KUDOS
As I understand, in order to be a non-terminating decimal we should be able to convert a number into X/99 format. If b>d then there is no way we can get 99 in the denominator and hence it will always be a terminating decimal. Thus, B is an answer.
Expert Post
8 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27465
Followers: 4305

Kudos [?]: 42107 [8] , given: 5956

Re: Terminating Decimal [#permalink] New post 13 Jan 2012, 15:36
8
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
enigma123 wrote:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?
(1) a > c
(2) b > d

Any idea what is the concept behind this question to get a answer B?


Theory:
Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are non-negative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^3\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\).

Note that if denominator already has only 2-s and/or 5-s then it doesn't matter whether the fraction is reduced or not.

For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal.

We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced.

BACK TO THE ORIGINAL QUESTION:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?

Question: is \(\frac{2^a*3^b}{2^c*3^d*5^e}\) a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d?

(1) a > c. Not sufficient.
(2) b > d. Sufficient.

Answer: B.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

1 KUDOS received
Director
Director
avatar
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 552
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V40
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 22

Kudos [?]: 1039 [1] , given: 217

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 16 Jan 2012, 15:39
1
This post received
KUDOS
Bunuel - you are a LEGEND. Many thanks for the lovely explanation.
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Intern
Intern
avatar
Joined: 18 Jun 2012
Posts: 44
Followers: 1

Kudos [?]: 4 [0], given: 15

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 28 Jul 2012, 04:34
@Bunuel

What if e=0 ? Will it be a terminating decimal ?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27465
Followers: 4305

Kudos [?]: 42107 [0], given: 5956

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 28 Jul 2012, 04:54
Expert's post
smartmanav wrote:
@Bunuel

What if e=0 ? Will it be a terminating decimal ?


You mean for (2)? In this case the denominator will have only 2's in it, and if the denominator has only 2's or only 5's in it, it still will be a terminating decimal.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

Senior Manager
Senior Manager
User avatar
Joined: 28 Apr 2012
Posts: 308
Location: India
Concentration: Technology, General Management
GMAT 1: 650 Q48 V31
GMAT 2: 770 Q50 V47
WE: Information Technology (Computer Software)
Followers: 16

Kudos [?]: 246 [0], given: 142

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 28 Jul 2012, 08:10
enigma123 wrote:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?
(1) a > c
(2) b > d

Any idea what is the concept behind this question to get a answer B?


Of all the theories.

Among 1/2, 1/3 and 1/5, only 1/3 is non terminating. So if we don't have 3 in the denominator then only p/q will be terminating.
b>d, ensures we have no "3" left in the denominator, hence the decimal is terminating.
(it holds true for 7,11,13....)
_________________

"Appreciation is a wonderful thing. It makes what is excellent in others belong to us as well."
― Voltaire


Press Kudos, if I have helped.
Thanks!

shit-happens-my-journey-to-172475.html#p1372807

1 KUDOS received
Intern
Intern
avatar
Joined: 28 Aug 2012
Posts: 46
Location: Austria
GMAT 1: 770 Q51 V42
Followers: 3

Kudos [?]: 32 [1] , given: 3

Re: is p/q a terminating decimal? [#permalink] New post 02 Sep 2012, 05:20
1
This post received
KUDOS
The question here is, whether b >= d.
Why is that? p and q are given in their prime factorization. If q has more twos and/or fives in its prime factorisation than p, it won't result in a non-terminating decimal, Remainder of 2 can only be 1: 1/2=0.5 and remainders of 5 result in: 1/5=0.2, 2/5=0.4 3/5=0.6 and 4/5=0.8.

However, this is not the case with the 3. If q has more threes than p, you can cancel all of the threes in the numerator, but there will remain some threes in the denominator, resulting in a non-terminating decimal, because 1/3=0.33333 and 2/3=0.666666

Statement (1) gives us no information about b and d.
Statement (2) does. There are fewer threes in the denominator. They will cancel with some of the threes in the numerator. Therefore, this statement is sufficient. We know that p/q will be a terminating decimal.

I hope my explanation is good enough.

Last edited by Zinsch123 on 02 Sep 2012, 05:29, edited 2 times in total.
Intern
Intern
avatar
Joined: 29 Aug 2012
Posts: 26
Schools: Babson '14
GMAT Date: 02-28-2013
Followers: 0

Kudos [?]: 11 [0], given: 56

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 04 Nov 2012, 22:02
what if b = -2 & d = -3 , then we have a case for terminating decimal ?? because the denominator now would be in 2^m * 5^n form.
2 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 78

Kudos [?]: 594 [2] , given: 43

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 05 Nov 2012, 10:44
2
This post received
KUDOS
himanshuhpr wrote:
what if b = -2 & d = -3 , then we have a case for terminating decimal ?? because the denominator now would be in 2^m * 5^n form.


Yes, \(p/q\) will be a terminating decimal. For \(b = -2\) and \(d = -3, b > d.\)

Since \(p/q = 2^{a-c}3^{b-d}5^{-e}\), the given ratio is a terminating decimal if and only if \(b-d\geq{0}\) or \(b\geq{d}.\) Which means there is no factor of 3 in the denominator, only factors of 2 and/or 5, if at all. If in addition \(a\geq{c}\) and \(e\leq{0}\), the given ratio is in fact an integer, which is a terminating decimal.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 4921
Followers: 298

Kudos [?]: 54 [0], given: 0

Premium Member
Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 24 Oct 2014, 07:20
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Manager
Manager
User avatar
Joined: 10 Sep 2014
Posts: 75
Followers: 0

Kudos [?]: 28 [0], given: 102

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 25 Oct 2014, 22:58
Hi Bunuel,

Quick question on this rule.
How about 1/15? it can be written as 1/2^0 * 3 * 5. The denominator has 5, but the fraction is not a terminating decimal. Can you please explain why?


Bunuel wrote:
enigma123 wrote:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?
(1) a > c
(2) b > d

Any idea what is the concept behind this question to get a answer B?


Theory:
Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are non-negative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^3\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\).

Note that if denominator already has only 2-s and/or 5-s then it doesn't matter whether the fraction is reduced or not.

For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal.

We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced.

BACK TO THE ORIGINAL QUESTION:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?

Question: is \(\frac{2^a*3^b}{2^c*3^d*5^e}\) a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d?

(1) a > c. Not sufficient.
(2) b > d. Sufficient.

Answer: B.

Hope it helps.

_________________

Press KUDOs if you find my explanation helpful

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27465
Followers: 4305

Kudos [?]: 42107 [0], given: 5956

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 26 Oct 2014, 05:32
Expert's post
TARGET730 wrote:
Hi Bunuel,

Quick question on this rule.
How about 1/15? it can be written as 1/2^0 * 3 * 5. The denominator has 5, but the fraction is not a terminating decimal. Can you please explain why?


Bunuel wrote:
enigma123 wrote:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?
(1) a > c
(2) b > d

Any idea what is the concept behind this question to get a answer B?


Theory:
Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are non-negative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^3\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\).

Note that if denominator already has only 2-s and/or 5-s then it doesn't matter whether the fraction is reduced or not.

For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal.

We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced.

BACK TO THE ORIGINAL QUESTION:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?

Question: is \(\frac{2^a*3^b}{2^c*3^d*5^e}\) a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d?

(1) a > c. Not sufficient.
(2) b > d. Sufficient.

Answer: B.

Hope it helps.


1/15 = 1/(3*5). For a reduced fraction to be terminating, the denominator of the fraction should NOT have any prime but 2 or/and 5.

Check Terminating and Recurring Decimals Problems in our Special Questions Directory.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

Manager
Manager
User avatar
Joined: 10 Sep 2014
Posts: 75
Followers: 0

Kudos [?]: 28 [0], given: 102

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink] New post 26 Oct 2014, 06:33
Got it now. Thanks Bunuel
_________________

Press KUDOs if you find my explanation helpful

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3   [#permalink] 26 Oct 2014, 06:33
    Similar topics Author Replies Last post
Similar
Topics:
If a, b, c, d and e are integers and p = 2^a3^b and q = gmat4life 1 11 Oct 2008, 09:40
Experts publish their posts in the topic If a, b, c, d and e are integers and p = 2^a^3^b and q = abhaypratapsingh 4 12 Jul 2008, 23:32
If a, b, c, d and e are integers and p = 2^a.3^b and q = trahul4 4 08 Jul 2007, 17:38
If a, b, c, d and e are integers and p = 2^a * 3^b and q = amd08 8 26 Mar 2007, 16:11
If a, b, c, d and e are integers and p = 2a3b and q = cool_jonny009 2 18 Feb 2006, 11:59
Display posts from previous: Sort by

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.