Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If a is not equal to b, is 1/(a-b) > ab ? [#permalink]

Show Tags

27 Feb 2013, 22:22

mun23 wrote:

If a is not equal to b, is 1/(a-b) > ab ?

(1) |a| > |b| (2) a < b

From F.S 1, let's assume a = -3 and b = -2. Thus, 1/(a-b) = -1 and a*b = 6. Thus, as -1<6, the answer to the question stem is No. Again, pick a = -3 and b = 2, and 1/(a-b) = -0.2, and a*b = -6. In this case we see that -0.2>-6, thus the answer to the question stem is a YES. Insufficient.

From F.S 2, lets again assume a = -3 and b = -2. Just as above we still get a NO. Again choosing the same set for a = -3 and b = 2, we get a YES to the question stem. Insufficient.

Combining both, we know that b-a>0 and mod(a)-mod(b)>0. Thus lets choose a=-7 and b=-2. We get 1/(a-b) = -0.2 and a*b = 14. Thus a NO. Again, choosing b=3 and a=-5, we get a YES . Insufficient.

Basically, the two fact statements given together mean that (a+b)<0. It's because from F.S 1, we get a^2-b^2>0 or (a-b)*(a+b)>0. We have from F.S 2 that a-b<0. Thus, (a+b) has to be negative.

Re: If a is not equal to b, is 1/(a-b) > ab ? [#permalink]

Show Tags

01 Jan 2014, 23:44

1

This post received KUDOS

Value substitution is good to solve this: 1. |a|>|b| we can say a can not be zero bcz mod of b will always be positive or equal to zero thus a must be anything but not zero.

We can do value substitution to test all cases: | a | b | a-b | 1/(a-b) | ab | Pass/ Fail for option (1) | -3 | -2 | -1 | -1 | 6 | Fail | -3 | 2 .| -5 | -1/5 | -6 | Pass | 3 .| 2 | 1 | 1 | 6 | Fail | 3 .| -2 | 5 | 1/5 | -6 | Pass | -3 .| 0 | -3 | -1/3 | 0 | Fail | 3 .| 0 | 3 | 1/3 | 0 | Pass

Multiple Pass / Fail inconsistent result, option one not sufficient.

Again inconsistent result, thus both option also not sufficient.

Answer E.
_________________

Piyush K ----------------------- Our greatest weakness lies in giving up. The most certain way to succeed is to try just one more time. ― Thomas A. Edison Don't forget to press--> Kudos My Articles: 1. WOULD: when to use?| 2. All GMATPrep RCs (New) Tip: Before exam a week earlier don't forget to exhaust all gmatprep problems specially for "sentence correction".

Re: If a is not equal to b, is 1/(a-b) > ab ? [#permalink]

Show Tags

18 Feb 2014, 03:10

(1) |a| > |b| Clearly IS. Look at this:

a > b -a > b - a > -b a > -b

Would give you various answers for the YES/NO Question. IS!

(2) a<b. Here, a could be 1 and b 2. then we had 1/-1 = -1 and 1 * 2 = 2. Hence 1/(a-b) < a*b. But if a = -1 and b = 2 then 1/(a-b) = -1/3 and a*b = -1 * 2 = -2. Thus 1/(a+b) > a*b. IS.

Re: If a is not equal to b, is 1/(a-b) > ab ? [#permalink]

Show Tags

26 Apr 2014, 08:26

So let's see. I think fastest way is to pic numbers. Statement 1, let's first say a=-2, b=1 then we have a YES answer. Let's also say that a=2 and b=1 then we have a NO answer. Insufficient. Statement 2, we can use a=2 and b=1 again for a YES answer. For a NO answer we could use b=3 and a=1. Insufficient. Both statements together we have that we can still use a=-2 and b=1 for a YES answer. Additionally, we could also have that both 'a' amd 'b' are negative. As in a=-3 and b=-2, giving a NO answer.

Re: If a is not equal to b, is 1/(a-b) > ab ? [#permalink]

Show Tags

30 Apr 2014, 13:07

Hey Karishma & Bunuel, Is there a faster way to solve this problem? I tried picking numbers but it took me more than 2 mins to arrive at the answer. Thanks, -Prasoon

Hey Karishma & Bunuel, Is there a faster way to solve this problem? I tried picking numbers but it took me more than 2 mins to arrive at the answer. Thanks, -Prasoon

For this problem I'd still advice to use number plugging at one point or another.

If a is not equal to b, is 1/(a-b) > ab ?

(1) |a| > |b|. This statement implies that a is further from 0 then b. We can have 4 cases:

For the second case the LHS is positive, while RHS is negative: 1/(a-b) > ab; For the fourth case the LHS is negative, while RHS is positive: 1/(a-b) < ab.

Two different answers. Not sufficient.

(2) a < b --> a - b < 0. The LHS is negative:

If a=-2 and b=1, then (1/(a-b)=-1/3) > (ab=-2); If a=-2 and b=-1, then (1/(a-b)=-1) < (ab=2).

Two different answers. Not sufficient.

(1)+(2) We can have only the third or fourth cases from (1):

--a-----0--b----- --a--b--0--------

We can use the same example as for (2): If a=-2 and b=1, then (1/(a-b)=-1/3) > (ab=-2); If a=-2 and b=-1, then (1/(a-b)=-1) < (ab=2).

Re: If a is not equal to b, is 1/(a-b) > ab ? [#permalink]

Show Tags

08 Sep 2015, 13:31

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

After days of waiting, sharing the tension with other applicants in forums, coming up with different theories about invites patterns, and, overall, refreshing my inbox every five minutes to...

I was totally freaking out. Apparently, most of the HBS invites were already sent and I didn’t get one. However, there are still some to come out on...

In early 2012, when I was working as a biomedical researcher at the National Institutes of Health , I decided that I wanted to get an MBA and make the...