Find all School-related info fast with the new School-Specific MBA Forum

It is currently 18 Sep 2014, 08:18

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If ab≠0 and points (-a, b) and (-b, a) are in the same quadr

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
3 KUDOS received
Manager
Manager
avatar
Joined: 02 Aug 2006
Posts: 119
Location: Mumbai
Followers: 1

Kudos [?]: 21 [3] , given: 3

If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 15 May 2010, 04:37
3
This post received
KUDOS
9
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

42% (02:27) correct 58% (01:42) wrong based on 294 sessions
If ab≠0 and points (-a, b) and (-b, a) are in the same quadrant of the xy-plane, is point (-x, y) in the same quadrant?

(1) xy > 0
(2) ax > 0
[Reveal] Spoiler: OA

Last edited by Bunuel on 31 Jul 2014, 01:52, edited 3 times in total.
Added the OA
Expert Post
10 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29676
Followers: 3496

Kudos [?]: 26351 [10] , given: 2710

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 15 May 2010, 06:31
10
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points (-a,b) and (-b,a) are in the same quadrant means that a and b have the same sign. These points can be either in II quadrant, in case a and b are both positive, as (-a,b)=(-,+)=(-b,a) OR in IV quadrant, in case they are both negative, as (-a,b)=(+,-)=(-b,a) ("=" sign means here "in the same quadrant").

Now the point (-x,y) will be in the same quadrant if x has the same sign as a (or which is the same with b) AND y has the same sign as a (or which is the same with b). Or in other words if all four: a, b, x, and y have the same sign.

Note that, only knowing that x and y have the same sign won't be sufficient (meaning that x and y must have the same sign but their sign must also match with the sign of a and b).

(1) xy>0 --> x and y have the same sign. Not sufficient.
(2) ax>0 --> a and x have the same sign. But we know nothing about y, hence not sufficient.

(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Answer: C.

For more in this topic check coordinate geometry chapter of math book: math-coordinate-geometry-87652.html

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 31 Oct 2011
Posts: 22
Location: United Arab Emirates
GMAT 1: 700 Q45 V40
GPA: 3.41
Followers: 0

Kudos [?]: 11 [0], given: 26

Reviews Badge
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 07 Dec 2011, 10:43
I took my first GmatPrep today after studying Quant for a month(Working on a 3month plan suggested by gmatclub experts). I haven't touched Verbal yet and my score was 660 (Q49V31) although i was a little disturbed about my Verbal score since i expected better, i was pretty surprised how getting 13 questions wrong in Quant got me to 49. But since GMAT is adaptive i guessed its possible.
Anyways, i reworked the incorrect questions after the exam and cracked a few of them, however there are a few others that just stumped me completely even after giving them a 2nd shot.

1. If ab!=0 and point (-a,b) and (-b,a) are in the same quadrant ,does point (-x,y) lie in this quadrant?
i) xy>0
ii) ax>0

There are a few others coming up..Please let me know if I made a rookie mistake :beat by posting these here when it should be in some other forum category, I searched a lot couldn't really find any other suitable place. Thanks :thanks

Last edited by ijoshi on 07 Dec 2011, 17:28, edited 2 times in total.
5 KUDOS received
GMAT Instructor
avatar
Joined: 24 Jun 2008
Posts: 967
Location: Toronto
Followers: 256

Kudos [?]: 681 [5] , given: 3

GMAT Tests User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 07 Dec 2011, 14:28
5
This post received
KUDOS
ijoshi wrote:
i was pretty surprised how getting 13 questions wrong in Quant got me to 49. But since GMAT is adaptive i guessed its possible.


I just wrote a post about this exact question on another forum, so I'll just paste a link if you're interested:

http://www.beatthegmat.com/gmat-scoring ... 98484.html


ijoshi wrote:
1. If ab!=0 and point (-a,b) and (-b,a) are in the same quadrant ?
i) xy>0
ii) ax>0


I think you've missed part of the question here - I think the question says:

If (-a, b) and (-b, a) are in the same quadrant, is the point (-x, y) in the same quadrant as (-a, b)?
1) xy > 0
2) ax > 0


If two points are in the same quadrant, then their x-coordinates have the same sign, and their y-coordinates have the same sign. So from the information that (-a, b) and (-b, a) are in the same quadrant, we learn that a and b have the same sign (either by looking at x-coordinates or at y-coordinates). So we know that a and b are either both positive or both negative, and that the point (-a, b) thus has one negative coordinate and one positive coordinate. The problem is we don't know which coordinate is positive, and which negative; it could be (+, -) or it could be (-, +).

From Statement 1, we learn that x and y have the same sign. Thus the point (-x, y) has coordinates of opposite signs. This point could be (+, -) or (-, +), so we don't know if it's in the same quadrant as (-a, b).

Statement 2 doesn't mention y at all, so cannot be sufficient, since we need to know about the sign of y.

Combining the two statements we know a and b have the same sign (from the stem), a and x have the same sign (from Statement 2) and x and y have the same sign (from Statement 1). So a, b, x and y all have the same sign. Thus the x-coordinates of (-a, b) and (-x, y) have the same sign, as do their y-coordinates, and the two points must be in the same quadrant. The answer is C.
_________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

Private GMAT Tutor based in Toronto

Intern
Intern
avatar
Joined: 14 Sep 2010
Posts: 24
Followers: 0

Kudos [?]: 6 [0], given: 4

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 18 Dec 2011, 15:48
(-a, b) and (-b, a) are in the same quadrant.
Is the point (-x, y) in the same quadrant as point (-a, b)?

(1) xy > 0
(2) ax > 0

From the information that (-a, b) and (-b, a) are in the same quadrant, it can be determined that
(-a, b) is in either quadrant II or quadrant IV. If (x, y) and (a, b) are in the same exact quadrant, they will have the same sign and (-x, y) will be in the same quadrant as (-a, b)'s.

(1) xy > 0

(x, y) is in quadrant I or quadrant III.
(-x, y) is in quadrant II or quadrant IV.
No further information is provided about (-a, b).

(2) ax > 0

Point x in (x, y) has the same sign as does point a in (a, b). Since a and b have the same sign, x, a and b have the same sign.

But the sign of point x could be different from, or the same as, the sign of point y. The condition that (x, y) and (a, b) have the same sign, and therefore that (-x, y) and (-a, b) are in the same quadrant, is possible but uncertain.

Combined analysis:

x has the same sign as y
x has the same sign as a and b
x, y, a and b all have the same sign.

This means (x, y) and (a, b) are in the same quadrant. (-x, y) and (-a, b) are in the same quadrant.


[xyab+xdj]

Last edited by Study1 on 31 Jan 2012, 15:26, edited 3 times in total.
Expert Post
7 KUDOS received
Magoosh GMAT Instructor
User avatar
Joined: 28 Dec 2011
Posts: 2085
Followers: 513

Kudos [?]: 2114 [7] , given: 30

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 04 Jan 2012, 11:41
7
This post received
KUDOS
Expert's post
Hi, there! I'm happy to help with this. :)

First, a quick review of quadrants: what defines the quadrants are the +/- signs of x and y

1) In Quadrant I, x > 0 and y > 0
2) In Quadrant II, x < 0 and y > 0
3) In Quadrant III, x < 0 and y < 0
4) In Quadrant VI, x > 0 and y < 0

If (-a, b) and (-b, a) are in the same quadrant, that means that the x-coordinates have the same sign, and also the y-coordinates have the same sign. Look at the y-coordinates --- if the two points are in the same quadrant, a & b have the same sign. They either could both be positive (in which case, the points would be in Quadrant II) or they could both be negative (in which case, the points would be in Quadrant IV).

Now, the question is: (-x, y) in the same quadrant as these two points?

(1) Statement 1: xy > 0

This tells us that x and y have the same sign --- both positive or both negative. Now, we know a & b have the same sign, and x & y have the same sign, but there's two possibilities for each, so we don't know whether a & b & x & y all have the same sign. This is insufficient.

(2) Statement 2: ax > 0

This, by itself, tells us that a and x have the same sign -- with this alone, we know that a & b & x all have the same sign, but we have zeor information about y. This too is insufficient.

Combined (1) & (2)
Prompt tells us a & b have the same sign. Statement #1 tells us x & y have the same sign. Statement #2 tells us x & a have the same sign. Put it all together --> we now know that x & y & a & b all have the same sign. Therefore, (-x, y) will have the same sign x- & y-coordinates as (-a, b) & (-b, a), and therefore all will be in the same quadrant. Combined statements are sufficient.

Answer = C

Here's another coordinate plane practice question just for practice.

http://gmat.magoosh.com/questions/1028

Does all that make sense? Please let me know if you have any additional questions.

Mike :-)
_________________

Mike McGarry
Magoosh Test Prep

Image

Image

1 KUDOS received
Manager
Manager
User avatar
Joined: 29 Jul 2011
Posts: 111
Location: United States
Followers: 3

Kudos [?]: 34 [1] , given: 6

GMAT Tests User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 04 Jan 2012, 12:44
1
This post received
KUDOS
Lets rephrase the stem first. For (-a,b) and (-b, a) to lie in same quadrant, both are either positive or negative.

1. xy>0, which means both are either positive or negative. Say a and b are positive, so they lie in IV. But xy could be ++ or --, causing it to lie in II or IV. Insufficient.

2. ax>0. which means positive or negative. What about y? No data on y causes this statement to be insufficient.

Together, means that a, x and y have same signs, therefore same quadrants. Sufficient - C.
_________________

I am the master of my fate. I am the captain of my soul.
Please consider giving +1 Kudos if deserved!

DS - If negative answer only, still sufficient. No need to find exact solution.
PS - Always look at the answers first
CR - Read the question stem first, hunt for conclusion
SC - Meaning first, Grammar second
RC - Mentally connect paragraphs as you proceed. Short = 2min, Long = 3-4 min

Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 564
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 423 [0], given: 217

GMAT Tests User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 15 Feb 2012, 15:51
Thanks everyone. But I am still getting confused between x, y a and b. Are we saying x and y as cordinates and a and b as points i.e. x(-a,b) and y(-b,a)?
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29676
Followers: 3496

Kudos [?]: 26351 [0], given: 2710

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 15 Feb 2012, 16:05
Expert's post
enigma123 wrote:
Thanks everyone. But I am still getting confused between x, y a and b. Are we saying x and y as cordinates and a and b as points i.e. x(-a,b) and y(-b,a)?


We have 3 points with coordinates (-a,b), (-b,a) and (-x, y).

Also, check Coordinate Geometry chapter of Math Book: math-coordinate-geometry-87652.html

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Director
Director
avatar
Status: Preparing for the 4th time -:(
Joined: 25 Jun 2011
Posts: 564
Location: United Kingdom
Concentration: International Business, Strategy
GMAT Date: 06-22-2012
GPA: 2.9
WE: Information Technology (Consulting)
Followers: 13

Kudos [?]: 423 [0], given: 217

GMAT Tests User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 15 Feb 2012, 16:09
Yes Bunuel - got it now. Thanks.
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610 :-(

1 KUDOS received
Manager
Manager
avatar
Joined: 20 Jun 2012
Posts: 96
Location: United States
Concentration: Finance, Operations
GMAT 1: 650 Q50 V28
GMAT 2: 700 Q50 V35
Followers: 1

Kudos [?]: 22 [1] , given: 42

GMAT ToolKit User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 30 Sep 2013, 11:48
1
This post received
KUDOS
jitendra wrote:
If ab≠0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

(1) xy>0
(2) ax>0


A table will help ..


a b -a,b -b,a
+ + 2nd 2nd
+ - 3rd 1st
- + 1st 3rd
- - 4th 4th

you gotta know following:
+,+ >> 1st
-,+ >> 2nd
-,- >> 3rd
+,- >> 4th


this tells us (-a, b) and (-b, a) are either in 2nd quadrant or in 4th quadrant ..

1.) xy>0 means both have same sign and -x,y could be in 2nd or 4th quadrant .. its possible that -x,y is in 4th quadrant and (-a, b) and (-b, a) in 2nd and vice-a-versa .. hence insufficient

2.) ax>0 .. no info about y ... not sufficient

1+2 >> a and x both +ve 2nd qadrant
both negative, 4th quatrant .. hence -x,y and the points given in question will be in same quadrant .. C answer
_________________

Forget Kudos ... be an altruist

Manager
Manager
avatar
Joined: 20 Jun 2012
Posts: 96
Location: United States
Concentration: Finance, Operations
GMAT 1: 650 Q50 V28
GMAT 2: 700 Q50 V35
Followers: 1

Kudos [?]: 22 [0], given: 42

GMAT ToolKit User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 30 Sep 2013, 11:49
jitendra wrote:
If ab≠0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

(1) xy>0
(2) ax>0


A table will help ..


a b -a,b -b,a
+ + 2nd 2nd
+ - 3rd 1st
- + 1st 3rd
- - 4th 4th

you gotta know following:
+,+ >> 1st
-,+ >> 2nd
-,- >> 3rd
+,- >> 4th


this tells us (-a, b) and (-b, a) are either in 2nd quadrant or in 4th quadrant ..

1.) xy>0 means both have same sign and -x,y could be in 2nd or 4th quadrant .. its possible that -x,y is in 4th quadrant and (-a, b) and (-b, a) in 2nd and vice-a-versa .. hence insufficient

2.) ax>0 .. no info about y ... not sufficient

1+2 >> a and x both +ve 2nd qadrant
both negative, 4th quatrant .. hence -x,y and the points given in question will be in same quadrant .. C answer
_________________

Forget Kudos ... be an altruist

Manager
Manager
avatar
Joined: 07 May 2013
Posts: 109
Followers: 0

Kudos [?]: 8 [0], given: 1

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 13 Oct 2013, 20:00
(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Bunuel, you are saying that (1)+(2) tells us that ALL a, b, x, and y have the same sign
Here's my doubt:
statements (1)+(2) give us info ONLY about the signs of a, x, and y.
You are telling that if "a, x, and y all have the SAME sign then b also has the same sign as a, x, and y."
How could you a say that because b does not form part of any of the statements (1) or (2)
So, what I mean to say is that b can be +ve or -ve irrespective of what signs a, x, and y take.
Please clear my doubt Bunuel.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29676
Followers: 3496

Kudos [?]: 26351 [0], given: 2710

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 13 Oct 2013, 23:19
Expert's post
madn800 wrote:
(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Bunuel, you are saying that (1)+(2) tells us that ALL a, b, x, and y have the same sign
Here's my doubt:
statements (1)+(2) give us info ONLY about the signs of a, x, and y.
You are telling that if "a, x, and y all have the SAME sign then b also has the same sign as a, x, and y."
How could you a say that because b does not form part of any of the statements (1) or (2)
So, what I mean to say is that b can be +ve or -ve irrespective of what signs a, x, and y take.
Please clear my doubt Bunuel.


The fact that points (-a,b) and (-b,a) are in the same quadrant means that a and b have the same sign.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 340
Followers: 3

Kudos [?]: 128 [0], given: 136

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 15 Oct 2013, 21:02
mikemcgarry wrote:
Hi, there! I'm happy to help with this. :)

First, a quick review of quadrants: what defines the quadrants are the +/- signs of x and y

1) In Quadrant I, x > 0 and y > 0
2) In Quadrant II, x < 0 and y > 0
3) In Quadrant III, x < 0 and y < 0
4) In Quadrant VI, x > 0 and y < 0

If (-a, b) and (-b, a) are in the same quadrant, that means that the x-coordinates have the same sign, and also the y-coordinates have the same sign. Look at the y-coordinates --- if the two points are in the same quadrant, a & b have the same sign. They either could both be positive (in which case, the points would be in Quadrant II) or they could both be negative (in which case, the points would be in Quadrant IV).


Can someone please provide insights in the above colored part.
I'm not sure if I would be able to deduce it under timed conditions. I know, this can be proved by taking hypothetical coordinates and see the behavior. However, I would like to understand it conceptually.

Please help.

Regards,
imhimanshu
_________________

+1 Kudos me, Help me unlocking GMAT Club Tests

Manager
Manager
avatar
Joined: 14 Mar 2013
Posts: 51
Location: United States
Concentration: General Management, Leadership
GMAT Date: 12-03-2013
WE: General Management (Retail)
Followers: 0

Kudos [?]: 19 [0], given: 119

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 19 Nov 2013, 14:41
ab≠0 and points (-a,b) and (-b,a) are in the same quadrant → tells me that a and b are both + or -

(1) xy>0 → tells me that x and y are both + or -. Not suffient

(2) ax>0 → tells me that a, b and x are all + or -. Not suffient

(1)+(2) enabled me to answer the question: C
SVP
SVP
User avatar
Joined: 09 Sep 2013
Posts: 2419
Followers: 196

Kudos [?]: 38 [0], given: 0

Premium Member
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 31 Jul 2014, 00:45
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Manager
Manager
User avatar
Joined: 09 Nov 2013
Posts: 78
Followers: 1

Kudos [?]: 3 [0], given: 2

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 10 Sep 2014, 11:08
Bunuel wrote:
If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points (-a,b) and (-b,a) are in the same quadrant means that a and b have the same sign. These points can be either in II quadrant, in case a and b are both positive, as (-a,b)=(-,+)=(-b,a) OR in IV quadrant, in case they are both negative, as (-a,b)=(+,-)=(-b,a) ("=" sign means here "in the same quadrant").

Now the point (-x,y) will be in the same quadrant if x has the same sign as a (or which is the same with b) AND y has the same sign as a (or which is the same with b). Or in other words if all four: a, b, x, and y have the same sign.

Note that, only knowing that x and y have the same sign won't be sufficient (meaning that x and y must have the same sign but their sign must also match with the sign of a and b).

(1) xy>0 --> x and y have the same sign. Not sufficient.
(2) ax>0 --> a and x have the same sign. But we know nothing about y, hence not sufficient.

(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Answer: C.

For more in this topic check coordinate geometry chapter of math book: math-coordinate-geometry-87652.html

Hope it helps.


Hey Bunuel just asking a relevant doubt. Does ( -b,-a) or (-a,-b) lies in the same quadrant as (a,b) ?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29676
Followers: 3496

Kudos [?]: 26351 [0], given: 2710

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr [#permalink] New post 10 Sep 2014, 11:39
Expert's post
Sidhrt wrote:
Bunuel wrote:
If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points (-a,b) and (-b,a) are in the same quadrant means that a and b have the same sign. These points can be either in II quadrant, in case a and b are both positive, as (-a,b)=(-,+)=(-b,a) OR in IV quadrant, in case they are both negative, as (-a,b)=(+,-)=(-b,a) ("=" sign means here "in the same quadrant").

Now the point (-x,y) will be in the same quadrant if x has the same sign as a (or which is the same with b) AND y has the same sign as a (or which is the same with b). Or in other words if all four: a, b, x, and y have the same sign.

Note that, only knowing that x and y have the same sign won't be sufficient (meaning that x and y must have the same sign but their sign must also match with the sign of a and b).

(1) xy>0 --> x and y have the same sign. Not sufficient.
(2) ax>0 --> a and x have the same sign. But we know nothing about y, hence not sufficient.

(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Answer: C.

For more in this topic check coordinate geometry chapter of math book: math-coordinate-geometry-87652.html

Hope it helps.


Hey Bunuel just asking a relevant doubt. Does ( -b,-a) or (-a,-b) lies in the same quadrant as (a,b) ?


Do you mean generally? If yes, then:

(a, b) and (-a, -b) will never be in the same quadrant.

(a, b) and (-b, -a) will be in the same quadrant if a is positive and b is negative, in this case (a, b) = (+, -) and (-b, -a) = (+, -) OR when a is negative and b is positive, in this case (a, b) = (-, +) and (-b, -a) = (-, +).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr   [#permalink] 10 Sep 2014, 11:39
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic a*b#0. Is |a|/|b|=a/b? devinawilliam83 1 12 Feb 2012, 21:00
2 Experts publish their posts in the topic If ab≠0 and points (-a,b) and (-b,a) are in the same quadran marcusaurelius 4 21 May 2010, 10:17
3 Experts publish their posts in the topic If ab ≠ 0, does a=b? gmattokyo 14 06 Nov 2009, 07:36
7 Experts publish their posts in the topic If ab≠0 and points (-a,b) and (-b,a) are in the same yaron 134 28 Aug 2005, 08:46
For any numbers a and b, a * b = a + b ab. If a*b=0, which GMAT TIGER 3 09 Dec 2007, 23:17
Display posts from previous: Sort by

If ab≠0 and points (-a, b) and (-b, a) are in the same quadr

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.