Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

17 Aug 2013, 19:02

Bunuel wrote:

Bumping for review and further discussion.

Bunuel I actually, do have question.

The expression is equal to 1/(2*5)^3(5^4)=1/625,000. Knowing this expression alone. Is there a way to figure out the answer? Just didn't occur to me to multiply by 2^4

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

21 Oct 2013, 01:59

Bunuel wrote:

Walkabout wrote:

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.

Is there any other method to do it . I mean it is difficult to think of 2^4 there and then .

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

29 Dec 2013, 12:57

Bunuel wrote:

Walkabout wrote:

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.

I have seen couple of more problem like this. One thing is still not clear to me. When you multiply whole denominator by 2^4 why is 5^7 getting ignored? Shouldn't 2^4 multiply both 2^3 as well as 5^7?

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.

I have seen couple of more problem like this. One thing is still not clear to me. When you multiply whole denominator by 2^4 why is 5^7 getting ignored? Shouldn't 2^4 multiply both 2^3 as well as 5^7?

Thanks

Frankly, the red part does not make any sense...

The denominator is \(2^7*5^7\). Multiply it by \(2^4\). What do you get?
_________________

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

11 Mar 2014, 16:54

Bunuel wrote:

Walkabout wrote:

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.

What is it that you saw that indicated you should multiply by 2^4. Just looking at the problem that never occurred to me and I'd like to understand why it did to you.

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Given: \(d=\frac{1}{2^3*5^7}\).

Multiply by \(\frac{2^4}{2^4}\) --> \(d=\frac{2^4}{(2^3*5^7)*2^4}=\frac{2^4}{2^7*5^7}=\frac{2^4}{10^7}=\frac{16}{10^7}=0.0000016\). Hence \(d\) will have two non-zero digits, 16, when expressed as a decimal.

Answer: B.

What is it that you saw that indicated you should multiply by 2^4. Just looking at the problem that never occurred to me and I'd like to understand why it did to you.

We need to multiply by 2^6/2^6 in order to convert the denominator to the base of 10 and then to convert the fraction into the decimal form: 0.xxxx.

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

05 Jun 2015, 13:14

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

23 Jun 2016, 09:38

1

This post received KUDOS

Walkabout wrote:

If d=1/(2^3*5^7) is expressed as a terminating decimal, how many nonzero digits will d have?

(A) One (B) Two (C) Three (D) Seven (E) Ten

Since actually dividing 1/(2^3*5^7) would be time consuming, we want to manipulate d so that we are working with a cleaner denominator. The easiest way to do that is to multiply d by a value that will produce a perfect power of 10 in the denominator. This means that the number of 2s in the denominator will equal the number of 5s in the denominator.

Thus, we can multiply 1/(2^3*5^7) by 2^4/2^4. This gives us:

2^4/(2^7*5^7)

2^4/10^7

16/10^7

16/10,000,000

We can stop here because we know that the 10,000,000 in the denominator means to move the decimal place after the 16 seven places to the left. The final value of d will be 0.0000016. Note that the division of 16 by 10,000,000 did not produce any additional non-zero digits. Thus d has 2 non-zero digits.

Answer is B.
_________________

Jeffrey Miller Jeffrey Miller Head of GMAT Instruction

\(\frac{1}{625}\) = \(\frac{0.008}{5}\) => \(0.0016\) Hence there will be 2 non zero digits... Feel free to revert in case of any doubt ( I have used some shortcuts , would love to explain if needed ) _________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how [#permalink]

Show Tags

12 Sep 2016, 08:11

I solved the question in the following method, not sure whether it is correct:

1/2^3 x 5^7 = 1/2^3 x 5^3 [Equating the power of 2 & 5 to get the number of zeros], left with 1/5^4 = 1/625 = 0.00105. Only 1 & 5 are the non-zero digits.

gmatclubot

Re: If d=1/(2^3*5^7) is expressed as a terminating decimal, how
[#permalink]
12 Sep 2016, 08:11

After days of waiting, sharing the tension with other applicants in forums, coming up with different theories about invites patterns, and, overall, refreshing my inbox every five minutes to...

I was totally freaking out. Apparently, most of the HBS invites were already sent and I didn’t get one. However, there are still some to come out on...

In early 2012, when I was working as a biomedical researcher at the National Institutes of Health , I decided that I wanted to get an MBA and make the...