Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
st1 implies there are 110 students in the exam hall and everyone of them will get exactly one pencil. but its not sufficient. st2 tells, 60 students are expected to get at least two pencils. this not sufficient alone. Now from both statements, 110 = exactly one + more than one or 110 = exactly one + 60 or, exactly one = 50 . so the probability of getting exactly one = 50/110 = 5/11 , so Answer (C)
Re: if each student gets at least one pencil in the exam hall [#permalink]
10 Aug 2013, 19:05
1
This post received KUDOS
x: Number of students get at least 1 pencil a: Number of students get exactly 1 pencil b: Number of students get more than 1 pencil x= a + b
to find the probability that a student gets exactly one pencil, we need to know the number of student get exactly 1 pencil and the number of student get at least 1 pencil. 1. 110 students are expected to get at least one pencil: x=a + b = 110 --> insufficient
2. 60 students are expected to get at least two pencils or the number of student get more than 1 pencil b = 60 --> insufficient.
(1) + (2): we have: x = a + b = 110 and b = 60 => a=50
The probability that a student gets exactly 1 pencil is: 50/110 = 5/11 --> sufficient
Re: if each student gets at least one pencil in the exam hall [#permalink]
11 Aug 2013, 00:12
1
This post received KUDOS
Asifpirlo wrote:
if each student gets at least one pencil in the exam hall, what is the probability that a student gets exactly one pencil in the exam hall? (1) 110 students are expected to get at least one pencil (2) 60 students are expected to get at least two pencils
st1 implies there are 110 students in the exam hall and everyone of them will get exactly one pencil. but its not sufficient. st2 tells, 60 students are expected to get at least two pencils. this not sufficient alone. Now from both statements, 110 = exactly one + more than one or 110 = exactly one + 60 or, exactly one = 50 . so the probability of getting exactly one = 50/110 = 5/11 , so Answer (C)
Each student gets one pencil . and 110 students got one pencil. There are 110 students in the exam hall.
Statement A:- 110 students gets atleast one pencil in the exam hall. With this we can only get the number of students in the exam hall.But not the number of students who got exactly one pencil. So A and D are out
Statement B:- 60 students are expected to get atleast two pencils in the exam hall. With this statement ALONE we will not be able to get the number of students who got exactly two pencils in the exam hall. So B is out.
Both statements combined. we get that 110 students get atleast one pencil. and 60 students get atleast two pencils. Refer to the diagram below
Attachment:
set.jpg [ 17.47 KiB | Viewed 1333 times ]
So the number of students who got exactly one pencil is the middle portion. ie 110 - 60 = 50. So the answer is C
Re: if each student gets at least one pencil in the exam hall [#permalink]
03 Sep 2013, 04:34
1
This post received KUDOS
Expert's post
avohden wrote:
how does the fact that there may be other students that have three or more pencils effect the probability? Seems that more information is needed, thus E seems appropriate.
The point is that we only need the total # of students and the # of students with exactly one pencil to get the probability.
If each student gets at least one pencil in the exam hall, what is the probability that a student gets exactly one pencil in the exam hall?
(1) 110 students are expected to get at least one pencil. Stem says that each student gets at least one pencil, thus there are total of 110 students. We don't know how many students get exactly one pencil. Not sufficient.
(2) 60 students are expected to get at least two pencils. Not sufficient.
(1)+(2) 110 students get at least one pencil (1 or more) and 60 students get at least two pencils (2 or more), thus 110-60=50 get exactly one pencil (50 get exactly one pencil + 60 get 2 or more = 110 students get 1 or more). Therefore the probability is 50/110. Sufficient.
Re: if each student gets at least one pencil in the exam hall [#permalink]
11 Aug 2013, 11:25
thutran wrote:
x: Number of students get at least 1 pencil a: Number of students get exactly 1 pencil b: Number of students get more than 1 pencil x= a + b
to find the probability that a student gets exactly one pencil, we need to know the number of student get exactly 1 pencil and the number of student get at least 1 pencil. 1. 110 students are expected to get at least one pencil: x=a + b = 110 --> insufficient
2. 60 students are expected to get at least two pencils or the number of student get more than 1 pencil b = 60 --> insufficient.
(1) + (2): we have: x = a + b = 110 and b = 60 => a=50
The probability that a student gets exactly 1 pencil is: 50/110 = 5/11 --> sufficient
The answer is C
1.
yes......... pretty good work ............. really good work _________________
Re: if each student gets at least one pencil in the exam hall [#permalink]
11 Aug 2013, 11:26
clearwater wrote:
Asifpirlo wrote:
if each student gets at least one pencil in the exam hall, what is the probability that a student gets exactly one pencil in the exam hall? (1) 110 students are expected to get at least one pencil (2) 60 students are expected to get at least two pencils
st1 implies there are 110 students in the exam hall and everyone of them will get exactly one pencil. but its not sufficient. st2 tells, 60 students are expected to get at least two pencils. this not sufficient alone. Now from both statements, 110 = exactly one + more than one or 110 = exactly one + 60 or, exactly one = 50 . so the probability of getting exactly one = 50/110 = 5/11 , so Answer (C)
Each student gets one pencil . and 110 students got one pencil. There are 110 students in the exam hall.
Statement A:- 110 students gets atleast one pencil in the exam hall. With this we can only get the number of students in the exam hall.But not the number of students who got exactly one pencil. So A and D are out
Statement B:- 60 students are expected to get atleast two pencils in the exam hall. With this statement ALONE we will not be able to get the number of students who got exactly two pencils in the exam hall. So B is out.
Both statements combined. we get that 110 students get atleast one pencil. and 60 students get atleast two pencils. Refer to the diagram below
Attachment:
set.jpg
So the number of students who got exactly one pencil is the middle portion. ie 110 - 60 = 50. So the answer is C
yes......... pretty good work ............. really good work especially the diagram _________________
Re: if each student gets at least one pencil in the exam hall [#permalink]
31 Aug 2013, 22:56
how does the fact that there may be other students that have three or more pencils effect the probability? Seems that more information is needed, thus E seems appropriate.
gmatclubot
Re: if each student gets at least one pencil in the exam hall
[#permalink]
31 Aug 2013, 22:56
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Wow! MBA life is hectic indeed. Time flies by. It is hard to keep track of the time. Last week was high intense training Yeah, Finance, Accounting, Marketing, Economics...