Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Maths: what is the area of the region? [#permalink]
08 Mar 2008, 12:37

Mode X + Mode Y = 5 represents a square with side 10.

So Answer should be 10*10 = 100

Explanation Mode X can be any value from and between -5 to 5. Similarly if above statement is true then Mode Y can be any value from and between 5 to -5. Valye of Mode X and Mode Y will be such that their sum is 5.

Now extreme condrinates can be (-5,0), (0,-5), (5,0), and (0,5)

Answer E.

Last edited by abhijit_sen on 08 Mar 2008, 16:10, edited 1 time in total.

Re: Maths: what is the area of the region? [#permalink]
09 Mar 2008, 01:16

Not sure if I am the odd man out...but why can't the values of x and y also be (1, 4) or (2, 3) or (3, 2) or (4, 1) which will give +ve and -ve co-ordinates in the four quadrants.

It does not say anywhere in the equation that either X or Y is 0. How did all of you guys assume that the values are only 5 & 0. Also it does not say that its the biggest region encompassed...

Re: Maths: what is the area of the region? [#permalink]
09 Mar 2008, 07:29

1

This post received KUDOS

suntaurian wrote:

Not sure if I am the odd man out...but why can't the values of x and y also be (1, 4) or (2, 3) or (3, 2) or (4, 1) which will give +ve and -ve co-ordinates in the four quadrants.

It does not say anywhere in the equation that either X or Y is 0. How did all of you guys assume that the values are only 5 & 0. Also it does not say that its the biggest region encompassed...

Please clarify....

Here is the deal - you need to find the points of intersection to figure out the area enlclosed by the given equations. The above points lie on the lines, but they are not where the lines intersect.

Let us take an example - two out four equations from the equation in question are x+y=5 and -x+y=5.

I use the form x/a + y/b = 1 to find out the x and y intercept (a is the x intercept and b is the y intercept). Or you can substitute x=0 and y=0 to get the same result - it's your choice.

For x+y=5 - (5,0) and (0,5) are the points where it intersects x and y axis.

For -x+y=5 - (-5,0) and (0,5) are the points where it intersects x and y axis.

So clearly they intersect at (0,5). You don't need to complete the whole process here. Based on the analysis so far you can see that the two above equations are pependicular to each other and intersect on y axis. So by logic of symmetry you can fill in the blanks to complete the picture and can see it's a square with vertices - (-5,0), (0,-5), (5,0), and (0,5).

Re: Maths: what is the area of the region? [#permalink]
09 Mar 2008, 07:38

sreehari wrote:

suntaurian wrote:

Not sure if I am the odd man out...but why can't the values of x and y also be (1, 4) or (2, 3) or (3, 2) or (4, 1) which will give +ve and -ve co-ordinates in the four quadrants.

It does not say anywhere in the equation that either X or Y is 0. How did all of you guys assume that the values are only 5 & 0. Also it does not say that its the biggest region encompassed...

Please clarify....

Here is the deal - you need to find the points of intersection to figure out the area enlclosed by the given equations. The above points lie on the lines, but they are not where the lines intersect.

Let us take an example - two out four equations from the equation in question are x+y=5 and -x+y=5.

I use the form x/a + y/b = 1 to find out the x and y intercept (a is the x intercept and b is the y intercept). Or you can substitute x=0 and y=0 to get the same result - it's your choice.

For x+y=5 - (5,0) and (0,5) are the points where it intersects x and y axis.

For -x+y=5 - (-5,0) and (0,5) are the points where it intersects x and y axis.

So clearly they intersect at (0,5). You don't need to complete the whole process here. Based on the analysis so far you can see that the two above equations are pependicular to each other and intersect on y axis. So by logic of symmetry you can fill in the blanks to complete the picture and can see it's a square with vertices - (-5,0), (0,-5), (5,0), and (0,5).

Good explanation. That's what I wanted to understand. +1

gmatclubot

Re: Maths: what is the area of the region?
[#permalink]
09 Mar 2008, 07:38