Find all School-related info fast with the new School-Specific MBA Forum

It is currently 25 Oct 2014, 15:57

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If function f(x) satisfies f(x) = f(x^2) for all x

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
4 KUDOS received
Current Student
User avatar
Status: Current MBA Student
Joined: 19 Nov 2009
Posts: 129
Concentration: Finance, General Management
GMAT 1: 720 Q49 V40
Followers: 8

Kudos [?]: 68 [4] , given: 210

If function f(x) satisfies f(x) = f(x^2) for all x [#permalink] New post 04 Jan 2011, 14:21
4
This post received
KUDOS
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

40% (01:34) correct 60% (00:44) wrong based on 89 sessions
If function f(x) satisfies f(x) = f(x^2) for all x, which of the following must be true?

A. f(4) = f(2)f(2)
B. f(16) - f(-2) = 0
C. f(-2) + f(4) = 0
D. f(3) = 3f(3)
E. f(0) = 0

I reviewed the previous function posts that Bunuel referred me to and seem to understand those problems decently. But I don't clearly understand the process of substitution and POE on this problem. I would appreciate if someone could help me with understand how to break the answer choices down.
[Reveal] Spoiler: OA
Expert Post
3 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [3] , given: 2874

Re: m25 #22 [#permalink] New post 04 Jan 2011, 16:37
3
This post received
KUDOS
Expert's post
tonebeeze wrote:
If function f(x) satisfies f(x) = f(x^2) for all x, which of the following must be true?

a. f(4) = f(2)f(2)
b.f(16) - f(-2) = 0
c. f(-2) + f(4) = 0
d. f(3) = 3f(3)
e. f(0) = 0

I reviewed the previous function posts that Bunuel referred me to and seem to understand those problems decently. But I don't clearly understand the process of substitution and POE on this problem. I would appreciate if someone could help me with understand how to break the answer choices down.


This function question is different from the problems you are referring to.

We are told that some function f(x) has following property f(x) = f(x^2) for all values of x. Note that we don't know the actual function, just this one property of it. For example for this function f(3)=f(3^2) --> f(3)=f(9), similarly: f(9)=f(81), so f(3)=f(9)=f(81)=....

Now, the question asks: which of the following MUST be true?


A. f(4)=f(2)*f(2): we know that f(2)=f(4), but it's not necessary f(2)=f(2)*f(2) to be true (it will be true if f(2)=1 or f(2)=0 but as we don't know the actual function we can not say for sure);

B. f(16) - f(-2) = 0: again f(-2)=f(4) =f(16)=... so f(16)-f(-2)=f(16)-f(16)=0 and thus this option is always true;

C. f(-2) + f(4) = 0: f(-2)=f(4), but it's not necessary f(4) + f(4)=2f(4)=0 to be true (it will be true only if f(4)=0, but again we don't know that for sure);

D. f(3)=3*f(3): is 3*f(3)-f(3)=0? is 2*f(3)=0? is f(3)=0? As we don't know the actual function we can not say for sure;

E. f(0)=0: And again as we don't know the actual function we can not say for sure.

Answer: B.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: m25 #22 [#permalink] New post 05 Jan 2011, 02:39
Expert's post
ionutulescu wrote:
While C can be true, we need to find the option that MUST be true. The answer will be true in all cases.
Answer B


As shown above each and every option COULD be true but only option B MUST be true.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 17 Oct 2010
Posts: 81
Followers: 1

Kudos [?]: 74 [0], given: 26

Re: m25 #22 [#permalink] New post 24 May 2012, 01:15
f(16) =f(16^2) = f( 16^4) .....and f(-2)= f(4) =f(16)=f(256)=f( 256^2)..

as f(x) = f(x^2)

so we can write f(16)-f(-2) as= f(16^2) -f(256^2) != 0

so f(16) = f( 16^2) = f(256)
if f(-2) can be written as f(16)
then f(-2) can also be written as f( 256^2) as shown above then when we have

f(256)-f(256^2) then for this particular condition I believe that f(x) cannot be true , so how are we confirming that f(16)-f(-2) MUST always be equal to 0

Please clarify
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: m25 #22 [#permalink] New post 24 May 2012, 01:20
Expert's post
Joy111 wrote:
f(16) =f(16^2) = f( 16^4) .....and f(-2)= f(4) =f(16)=f(256)=f( 256^2)..

as f(x) = f(x^2)

so we can write f(16)-f(-2) as= f(16^2) -f(256^2) != 0

so f(16) = f( 16^2) = f(256)
if f(-2) can be written as f(16)
then f(-2) can also be written as f( 256^2) as shown above then when we have

f(256)-f(256^2) then for this particular condition I believe that f(x) cannot be true , so how are we confirming that f(16)-f(-2) MUST always be equal to 0

Please clarify


Can you please tell me what do you mean by the red part?

Anyway: we are told that f(x) = f(x^2), so f(-2)=f(4) =f(16)=... --> f(16)-f(-2)=f(16)-f(16)=0. Thus option D is always true.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 17 Oct 2010
Posts: 81
Followers: 1

Kudos [?]: 74 [0], given: 26

Re: m25 #22 [#permalink] New post 24 May 2012, 01:37
Bunuel wrote:
Joy111 wrote:
f(16) =f(16^2) = f( 16^4) .....and f(-2)= f(4) =f(16)=f(256)=f( 256^2)..

as f(x) = f(x^2)

so we can write f(16)-f(-2) as= f(16^2) -f(256^2) != 0

so f(16) = f( 16^2) = f(256)
if f(-2) can be written as f(16)
then f(-2) can also be written as f( 256^2) as shown above then when we have

f(256)-f(256^2) then for this particular condition I believe that f(x) cannot be true , so how are we confirming that f(16)-f(-2) MUST always be equal to 0

Please clarify


Can you please tell me what do you mean by the red part?

Anyway: we are told that f(x) = f(x^2), so f(-2)=f(4) =f(16)=... --> f(16)-f(-2)=f(16)-f(16)=0. Thus option D is always true.



given statement = f(16)-f(-2)= 0

which can be written as

1) f(16)-f(4) lets say we stop here , how do we know that this equation will be 0
2) f(16)-f(16) this as we can see will of course yield a 0
3)f(16)-f(256) this is yet another way of writing f(16) - f(-2) , again how can we be sure that this will always be 0 without knowing the function .

we are manipulating f(16)-f(-2) to become f(16)-f(16) this of course as we can see will be zero

but what if we write f(16)-f(-2) as f(-2)-f(256 ) and stop here , without the function it is difficult to see how this will yield a 0
if (ii) is the answer then f(16)-f(-2) = 0 must be true for all functions for the value's of x=16 and x= -2
but since f(x) = f(x^2) then f(-2)- f( 256) = 0 must also be true for all functions for the value's of x=-2 and x= 256

I think we are only considering one condition, the condition when f(-2) = f(16) then of course it is 0, but what if f(-2) is not equal to f(16) , in that case how can we say that f(16)- f( -2) will always be zero.

is it possible to clearly prove this by taking the example of one actual function rather then dealing ambiguously. thank you.

Last edited by Joy111 on 24 May 2012, 02:13, edited 3 times in total.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: m25 #22 [#permalink] New post 24 May 2012, 01:43
Expert's post
Joy111 wrote:
Bunuel wrote:
Joy111 wrote:
f(16) =f(16^2) = f( 16^4) .....and f(-2)= f(4) =f(16)=f(256)=f( 256^2)..

as f(x) = f(x^2)

so we can write f(16)-f(-2) as= f(16^2) -f(256^2) != 0

so f(16) = f( 16^2) = f(256)
if f(-2) can be written as f(16)
then f(-2) can also be written as f( 256^2) as shown above then when we have

f(256)-f(256^2) then for this particular condition I believe that f(x) cannot be true , so how are we confirming that f(16)-f(-2) MUST always be equal to 0

Please clarify


Can you please tell me what do you mean by the red part?

Anyway: we are told that f(x) = f(x^2), so f(-2)=f(4) =f(16)=... --> f(16)-f(-2)=f(16)-f(16)=0. Thus option D is always true.


since f(x) = f(x^2) so we can write f(16) = f( 256)
similarly f(-2)= f(4) = f(16)= f(256) =f( 256^2)

hence f(16) - f(-2) can also be written as f( 256) - f( 256^2)

so how is this statement f(16) -f(-2) = 0 = f( 256) - f( 256^2) always valid


I don't understand your question at all.

f(16)-f(-2) and f(16)-f(16^2) both equal to zero since f(x) = f(x^2) for all x, from which we have that f(16)=f(-2) and f(16)=f(16^2).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 17 Oct 2010
Posts: 81
Followers: 1

Kudos [?]: 74 [0], given: 26

Re: m25 #22 [#permalink] New post 24 May 2012, 02:26
I don't understand your question at all.

f(16)-f(-2) and f(16)-f(16^2) both equal to zero since f(x) = f(x^2) for all x, from which we have that f(16)=f(-2) and f(16)=f(16^2).[/quote]

I think we are only considering one condition, the condition when f(-2) = f(16) then of course it is 0, but what if f(-2) is not equal to f(16) , in that case how can we say that f(16)- f( -2) will always be zero. f(-2) could equal = f(256) = f(256^2) etc

so f(16)- f( 256^2) , is this equal to 0 as well.

.

is it possible to clearly prove this by taking the example of one actual function .Thank you


every thing will fall into place , if this question was COULD be true rather than MUST be true , could you please check this once more .
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: m25 #22 [#permalink] New post 24 May 2012, 02:32
Expert's post
Joy111 wrote:
I think we are only considering one condition, the condition when f(-2) = f(16) then of course it is 0, but what if f(-2) is not equal to f(16) , in that case how can we say that f(16)- f( -2) will always be zero. f(-2) could equal = f(256) = f(256^2) etc

so f(16)- f( 256^2) , is this equal to 0 as well.

.

is it possible to clearly prove this by taking the example of one actual function .Thank you


every thing will fall into place , if this question was COULD be true rather than MUST be true , could you please check this once more .


I think that you just have some problems understanding the question.

See the red part "what if f(-2) is not equal to f(16) ". That's the point: since f(x) = f(x^2) for all x then f(16)=f(-2) without any "what if".
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 28 Feb 2012
Posts: 22
GMAT 1: 700 Q48 V39
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 8 [0], given: 3

Re: m25 #22 [#permalink] New post 24 May 2012, 09:05
Joy111 wrote:
f(16) =f(16^2) = f( 16^4) .....and f(-2)= f(4) =f(16)=f(256)=f( 256^2)..

as f(x) = f(x^2)

so we can write f(16)-f(-2) as= f(16^2) -f(256^2) != 0

so f(16) = f( 16^2) = f(256)
if f(-2) can be written as f(16)
then f(-2) can also be written as f( 256^2) as shown above then when we have

f(256)-f(256^2) then for this particular condition I believe that f(x) cannot be true , so how are we confirming that f(16)-f(-2) MUST always be equal to 0

Please clarify


Let us assume f(x) = y.
f(x) = f(x^2) means that for all values of x, f(x) takes the exact same value as f(x^2) takes.

And vice versa f(x^2) is always equal to f(x).

so, f(x^2) also equals y.
Now irrespective of how far you go on squaring x, the value f(x) or f(x^2) or f(x^4) etc will always be y.
Intern
Intern
avatar
Joined: 26 May 2012
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: m25 #22 [#permalink] New post 26 May 2012, 11:55
Bunuel wrote:
tonebeeze wrote:
If function f(x) satisfies f(x) = f(x^2) for all x, which of the following must be true?

a. f(4) = f(2)f(2)
b.f(16) - f(-2) = 0
c. f(-2) + f(4) = 0
d. f(3) = 3f(3)
e. f(0) = 0

I reviewed the previous function posts that Bunuel referred me to and seem to understand those problems decently. But I don't clearly understand the process of substitution and POE on this problem. I would appreciate if someone could help me with understand how to break the answer choices down.


This function question is different from the problems you are referring to.

We are told that some function f(x) has following property f(x) = f(x^2) for all values of x. Note that we don't know the actual function, just this one property of it. For example for this function f(3)=f(3^2) --> f(3)=f(9), similarly: f(9)=f(81), so f(3)=f(9)=f(81)=....

Now, the question asks: which of the following MUST be true?


A. f(4)=f(2)*f(2): we know that f(2)=f(4), but it's not necessary f(2)=f(2)*f(2) to be true (it will be true if f(2)=1 or f(2)=0 but as we don't know the actual function we can not say for sure);

B. f(16) - f(-2) = 0: again f(-2)=f(4) =f(16)=... so f(16)-f(-2)=f(16)-f(16)=0 and thus this option is always true;

C. f(-2) + f(4) = 0: f(-2)=f(4), but it's not necessary f(4) + f(4)=2f(4)=0 to be true (it will be true only if f(4)=0, but again we don't know that for sure);

D. f(3)=3*f(3): is 3*f(3)-f(3)=0? is 2*f(3)=0? is f(3)=0? As we don't know the actual function we can not say for sure;

E. f(0)=0: And again as we don't know the actual function we can not say for sure.

Answer: B.

Hope it's clear.


who created this question, the solution is trivial has no end, how can you stop f(16) just as it is, f(16) can be f(16 sqaured) so on and so forth, there is no end to it unless some boundary conditions mentioned.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: m25 #22 [#permalink] New post 27 May 2012, 02:09
Expert's post
koro12 wrote:
Bunuel wrote:
tonebeeze wrote:
If function f(x) satisfies f(x) = f(x^2) for all x, which of the following must be true?

a. f(4) = f(2)f(2)
b.f(16) - f(-2) = 0
c. f(-2) + f(4) = 0
d. f(3) = 3f(3)
e. f(0) = 0

I reviewed the previous function posts that Bunuel referred me to and seem to understand those problems decently. But I don't clearly understand the process of substitution and POE on this problem. I would appreciate if someone could help me with understand how to break the answer choices down.


This function question is different from the problems you are referring to.

We are told that some function f(x) has following property f(x) = f(x^2) for all values of x. Note that we don't know the actual function, just this one property of it. For example for this function f(3)=f(3^2) --> f(3)=f(9), similarly: f(9)=f(81), so f(3)=f(9)=f(81)=....

Now, the question asks: which of the following MUST be true?


A. f(4)=f(2)*f(2): we know that f(2)=f(4), but it's not necessary f(2)=f(2)*f(2) to be true (it will be true if f(2)=1 or f(2)=0 but as we don't know the actual function we can not say for sure);

B. f(16) - f(-2) = 0: again f(-2)=f(4) =f(16)=... so f(16)-f(-2)=f(16)-f(16)=0 and thus this option is always true;

C. f(-2) + f(4) = 0: f(-2)=f(4), but it's not necessary f(4) + f(4)=2f(4)=0 to be true (it will be true only if f(4)=0, but again we don't know that for sure);

D. f(3)=3*f(3): is 3*f(3)-f(3)=0? is 2*f(3)=0? is f(3)=0? As we don't know the actual function we can not say for sure;

E. f(0)=0: And again as we don't know the actual function we can not say for sure.

Answer: B.

Hope it's clear.


who created this question, the solution is trivial has no end, how can you stop f(16) just as it is, f(16) can be f(16 sqaured) so on and so forth, there is no end to it unless some boundary conditions mentioned.


The question asks which of the options presented must be true.

Now, since f(x) = f(x^2) then f(-2)=f(16) so option B. f(16) - f(-2) = 0 is always true.

Next, the fact that f(16)=f(16^2) does not make option B any less correct. So there is nothing wrong with the question above.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 18 Oct 2012
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Algebra (Functions) [#permalink] New post 18 Oct 2012, 08:17
Please can someone the solution for the appended problem. Dint quite get the explaination provided. -Source - Gmat Club Test


if function f(x) satisfies f(x)=f(x^2) for all x , which of the following must be true?

A. f(4) =f(2) f(2)
B. f(16)-f(-2) = 0
C. f(-2)+f(4)=0
D.f(3)=3f(3)
E.f(0)=f(0)

Ans is B

Thank you.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28975 [0], given: 2874

Re: Algebra (Functions) [#permalink] New post 18 Oct 2012, 09:00
Expert's post
carpediem1984sm wrote:
Please can someone the solution for the appended problem. Dint quite get the explaination provided. -Source - Gmat Club Test


if function f(x) satisfies f(x)=f(x^2) for all x , which of the following must be true?

A. f(4) =f(2) f(2)
B. f(16)-f(-2) = 0
C. f(-2)+f(4)=0
D.f(3)=3f(3)
E.f(0)=f(0)

Ans is B

Thank you.


Merging similar topics. Please refer to the discussion above and ask if anything remains unclear.

Also, please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html (pay attention to the rules #1 and 3)
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

1 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 73

Kudos [?]: 529 [1] , given: 43

Re: If function f(x) satisfies f(x) = f(x^2) for all x [#permalink] New post 18 Oct 2012, 12:50
1
This post received
KUDOS
tonebeeze wrote:
If function f(x) satisfies f(x) = f(x^2) for all x, which of the following must be true?

A. f(4) = f(2)f(2)
B. f(16) - f(-2) = 0
C. f(-2) + f(4) = 0
D. f(3) = 3f(3)
E. f(0) = 0

I reviewed the previous function posts that Bunuel referred me to and seem to understand those problems decently. But I don't clearly understand the process of substitution and POE on this problem. I would appreciate if someone could help me with understand how to break the answer choices down.


Rather than analyzing each answer, I would like to point out how the correct answer should look like.
From the equation f(x) = f(x^2) we can get a chain of equalities between the values of the function f at different points.
So, we will be able to deduce different equalities of the type f(a)=f(b), but there is no way to find explicit values of the function in any specific point.
The correct answer should be of this form, or its equivalent f(a)-f(b)=0.
Only answer B is of this type.

For any specific value of x, except 0 and 1, we can start an infinite chain of equalities. For example, start with x=2:

f(2)=f(4)=f((-2)^2)=f(-2)=f(4^2)=f(16)=f((-4)^2)=f(-4)=f(16^2)=f(256)=f((-16)^2)=f(-16)=....
We can see that for a given x, the function f will have the same value at all the points x, x^2,x^4,x^8,..., -x,-x^2,-x^4,-x^8,...

For 0, we just get f(0)=f(0^2), while for x=1, we have f(1)=f((-1)^2)=f(-1).
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

CEO
CEO
User avatar
Joined: 09 Sep 2013
Posts: 2870
Followers: 208

Kudos [?]: 43 [0], given: 0

Premium Member
Re: If function f(x) satisfies f(x) = f(x^2) for all x [#permalink] New post 16 Jul 2014, 20:48
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Manager
Manager
User avatar
Joined: 20 Dec 2013
Posts: 120
Followers: 1

Kudos [?]: 42 [0], given: 1

Re: If function f(x) satisfies f(x) = f(x^2) for all x [#permalink] New post 16 Jul 2014, 20:58
[quote="tonebeeze"]If function f(x) satisfies f(x) = f(x^2) for all x, which of the following must be true?

A. f(4) = f(2)f(2)
B. f(16) - f(-2) = 0
C. f(-2) + f(4) = 0
D. f(3) = 3f(3)
E. f(0) = 0

A- f(4) = f(2)

Now is it always true that f(2)f(2) = f(2) OR f(2) = 1
It might be or might not be true.

B - f(16) = f(-2)
f(16) = f(4) = f(2) = f(-2)
This must be true

C. f(-2) = -f(4)
f(-2) = f(4). It might or might not be equal to negative of it.

D. f(3) = 3f(3) Again this might not be true always

E. f(0) = 0 We don't know what will be the y value of the function as expressed in option C, D and E.

Hence the answer is B.
_________________

Perfect Scores

If you think our post was valuable then please encourage us with Kudos :)

To learn GMAT for free visit:

http://Perfect-Scores.com
http://Youtube.com/PerfectScores
http://Facebook.com/PerfectScores

Re: If function f(x) satisfies f(x) = f(x^2) for all x   [#permalink] 16 Jul 2014, 20:58
    Similar topics Author Replies Last post
Similar
Topics:
Function F(x) satisfies F(x) = F(x^2) for all of x. Which bmwhype2 2 24 Oct 2007, 13:00
Function f(x) satisfies f(x) = f(x^2) for all x. Which of GMATBLACKBELT 5 16 Oct 2007, 10:10
2 function F(x) satisfies F(x) = F(x^2) for all x. Which of beckee529 12 26 Sep 2007, 23:32
Function f(x) satisfies f(x) = f(x^2) for all x. Which of raptr 8 03 Sep 2007, 18:44
Function f(x) satisfies the following function f(x) =F(x^2) pawan82 2 14 Nov 2006, 03:33
Display posts from previous: Sort by

If function f(x) satisfies f(x) = f(x^2) for all x

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.