Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

OA C.
(1) INSUFFICIENT: At first glance, this may seem sufficient since if 5 is the remainder when k is divided by j, then there will always exist a positive integer m such that k = jm + 5. In this case, m is equal to the integer quotient and 5 is the remainder. For example, if k = 13 and j = 8, and 13 divided by 8 has remainder 5, it must follow that there exists an m such that k = jm + 5: m = 1 and 13 = (8)(1) + 5.

However, the logic does not go the other way: 5 is not necessarily the remainder when k is divided by j. For example, if k = 13 and j = 2, there exists an m (m = 4) such that k = jm + 5: 13 = (2)(4) + 5, consistent with statement (1), yet 13 divided by 2 has remainder 1 rather than 5.

When j < 5 (e.g., 2 < 5); this means that j can go into 5 (e.g., 2 can go into 5) at least one more time, and consequently m is not the true quotient of k divided by j and 5 is not the true remainder. Similarly, if we let k = 14 and j = 3, there exists an m (e.g., m = 3) such that statement (1) is also satisfied [i.e., 14 = (3)(3) + 5], yet the remainder when 14 is divided by 3 is 2, a different result than the first example.

Statement (1) tells us that k = jm + 5, where m is a positive integer. That means that k/j = m + 5/j = integer + 5/j. Thus, the remainder when k is divided by j is either 5 (when j > 5), or equal to the remainder of 5/j (when j is 5 or less). Since we do not know whether j is greater than or less than 5, we cannot determine the remainder when k is divided by j.

(2) INSUFFICIENT: This only gives the range of possible values of j and by itself does not give any insight as to the value of the remainder when k is divided by j.

(1) AND (2) SUFFICIENT: Statement (1) was not sufficient because we were not given whether 5 > j, so we could not be sure whether j could go into 5 (or k) any additional times. However, (2) tells us that j > 5, so we now know that j cannot go into 5 any more times. This means that m is the exact number of times that k can be divided by j and that 5 is the true remainder.

Another way of putting this is: From statement (1) we know that k/j = m + 5/j = integer + 5/j. From statement (2) we know that j > 5. Therefore, the remainder when k is divided by j must always be 5.

The correct answer is C.

_________________

Whether you think you can or think you can't. You're right! - Henry Ford (1863 - 1947)