If k and t are integers and k^2 – t^2 is an odd integer : GMAT Problem Solving (PS)
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

It is currently 10 Dec 2016, 18:20
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If k and t are integers and k^2 – t^2 is an odd integer

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 30 Aug 2007
Posts: 62
Followers: 1

Kudos [?]: 7 [0], given: 0

If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 02 Oct 2007, 12:27
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

78% (01:59) correct 22% (01:17) wrong based on 389 sessions

HideShow timer Statistics

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III
[Reveal] Spoiler: OA
Director
Director
User avatar
Joined: 08 Jun 2007
Posts: 583
Followers: 2

Kudos [?]: 97 [0], given: 0

Re: GMAT Prep 2: PS Q25 [#permalink]

Show Tags

New post 02 Oct 2007, 12:33
avenger wrote:
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III


For k^2 – t^2 to be odd , I guess either k or t must be odd .
So lets assume k= even t = odd

I. k + t + 2
even + odd + 2 = even + odd = odd

II. k^2 + 2kt + t^2
even + even + odd = even + odd = odd

III. k^2 + t^2
even + odd = odd .

So I guess NONE
Director
Director
avatar
Joined: 18 Jul 2006
Posts: 528
Followers: 1

Kudos [?]: 54 [0], given: 0

 [#permalink]

Show Tags

New post 02 Oct 2007, 12:41
none..i.e E

take any example.. 3 & 4 and plug it in each option.
Manager
Manager
avatar
Joined: 30 Aug 2007
Posts: 62
Followers: 1

Kudos [?]: 7 [0], given: 0

 [#permalink]

Show Tags

New post 02 Oct 2007, 14:45
OA is A i.e. (None).

Thanks
Manager
Manager
avatar
Joined: 21 Feb 2012
Posts: 115
Location: India
Concentration: Finance, General Management
GMAT 1: 600 Q49 V23
GPA: 3.8
WE: Information Technology (Computer Software)
Followers: 1

Kudos [?]: 113 [0], given: 15

Re: Q25) If k and t are integers and k^2 t^2 is an odd [#permalink]

Show Tags

New post 07 May 2012, 07:42
avenger wrote:
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III


I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt
Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35951
Followers: 6866

Kudos [?]: 90120 [0], given: 10418

Re: Q25) If k and t are integers and k^2 t^2 is an odd [#permalink]

Show Tags

New post 07 May 2012, 08:23
piyushksharma wrote:
avenger wrote:
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III


I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.


The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 21 Feb 2012
Posts: 115
Location: India
Concentration: Finance, General Management
GMAT 1: 600 Q49 V23
GPA: 3.8
WE: Information Technology (Computer Software)
Followers: 1

Kudos [?]: 113 [0], given: 15

Re: Q25) If k and t are integers and k^2 t^2 is an odd [#permalink]

Show Tags

New post 07 May 2012, 09:54
Bunuel wrote:
piyushksharma wrote:
avenger wrote:
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III


I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.


The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.

Thanks, i misinterpreted the option (III),rather i solved it for k^2 - t^2.
Intern
Intern
avatar
Joined: 14 Aug 2012
Posts: 13
Followers: 0

Kudos [?]: 1 [0], given: 11

Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 27 Mar 2013, 03:51
i have chosen to solve using fact that since k^2 - t^2 is odd, both K+T and K-T should be odd.
Making this choice, i get that both options 1 and 2 are odd
1) k+t+2 means odd number + 2 = odd number
2) (k+t)^2 means (odd)^2 = odd number
3) k^2 + t^2 = ((k+t)^2 + (k-t)^2)/2 => (odd + odd)/2 = even

so, result is (1) and (2) are odd while (3) is even, since this combination is not part of any answer, chose NONE.

Is this approach correct?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35951
Followers: 6866

Kudos [?]: 90120 [0], given: 10418

Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 27 Mar 2013, 05:36
mamathak wrote:
i have chosen to solve using fact that since k^2 - t^2 is odd, both K+T and K-T should be odd.
Making this choice, i get that both options 1 and 2 are odd
1) k+t+2 means odd number + 2 = odd number
2) (k+t)^2 means (odd)^2 = odd number
3) k^2 + t^2 = ((k+t)^2 + (k-t)^2)/2 => (odd + odd)/2 = even

so, result is (1) and (2) are odd while (3) is even, since this combination is not part of any answer, chose NONE.

Is this approach correct?


No, that's NOT correct.

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check here: if-k-and-t-are-integers-and-k-2-t-2-is-an-odd-integer-53248.html#p1082758

Hope it helps.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Intern
Intern
avatar
Joined: 22 Jan 2010
Posts: 25
Location: India
Concentration: Finance, Technology
GPA: 3.5
WE: Programming (Telecommunications)
Followers: 0

Kudos [?]: 25 [1] , given: 3

Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 27 Mar 2013, 05:50
1
This post received
KUDOS
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2 -t^2 = odd
so,if k is even,t will be odd.

I. k+t+2 = even+odd+2 = odd
II. k^2 + 2kt+t^2 = even + even + odd = odd
III. k^2 + t^2 = even + odd = odd

Hence answer will be option A.
_________________________________________

Press KUDOS if you like my post. :
_________________

Please press +1 KUDOS if you like my post.

1 KUDOS received
Intern
Intern
User avatar
Status: Currently Preparing the GMAT
Joined: 15 Feb 2013
Posts: 31
Location: United States
GMAT 1: 550 Q47 V23
GPA: 3.7
WE: Analyst (Consulting)
Followers: 1

Kudos [?]: 16 [1] , given: 11

Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 27 Mar 2013, 07:28
1
This post received
KUDOS
This problem mobilizes addition, substraction and multiplication rules of odd and even integers so knowing your rules will be the key to helping you solve this correctly. :)

First of all, \(k^2 - t^2\) can be rewritten as \((k-t)*(k+t)\)

If you're unsure about the notation, just develop \((k-t)*(k+t)\).

Now, assuming that \(k^2 - t^2\) = \((k-t)*(k+t)\) is odd, then according to the following rule :

odd * odd = odd (1)

We'll get \(k-t\) is odd and \(k+t\) is odd, which is extremely helpful since, if you notice the answer choices, all of them revolve around \(k+t\). So let's go through them one by one :

I. \(k+t+2\).

Using parenthesis to isolate \(k+t\), we get \((k+t)+2\) which is a sum involving an odd number and an even number. So, according to the following rule :

odd + even = odd (2)

Which means that \(k+t+2\) is odd. So answer I is not possible. (Since we're looking for an even result)

II. \(k^2 + 2kt + t^2\)

Now this answer choice may seem intimidating, but it actually isn't. Since \(k^2 + 2kt + t^2\) is equal to \((k+t)^2\). And since \(k+t\) is odd, then its square will be odd as well (rule 1). So answer II is also not possible.

III.\(k^2 + t^2\)

Once again, this answer choice may seem intimidating since you have no data on k nor t. But, looking at answer choice II., \(k^2+t^2\) is actually equal to \((k+t)^2 - 2kt\).
This is a difference between an odd number \((k+t)^2\) and an even number \(2kt\), so according to rule 2, the result will be odd. So answer III. is also not possible.

As such, the only correct answer to this question is answer A.

Hope that helped. :)
Manager
Manager
avatar
Joined: 31 Mar 2013
Posts: 71
Location: United States
Followers: 0

Kudos [?]: 26 [0], given: 109

Re: Q25) If k and t are integers and k^2 t^2 is an odd [#permalink]

Show Tags

New post 04 Sep 2013, 03:18
Bunuel wrote:
piyushksharma wrote:
avenger wrote:
Q25)
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III


I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.


The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.


Hi Bunuel,
You've mentioned that if k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Isn't a 3rd case also possible where K is odd and T is 0?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 35951
Followers: 6866

Kudos [?]: 90120 [0], given: 10418

Re: Q25) If k and t are integers and k^2 t^2 is an odd [#permalink]

Show Tags

New post 04 Sep 2013, 03:26
emailmkarthik wrote:
Bunuel wrote:
piyushksharma wrote:
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

(a) None
(b) I only
(c) II only
(d) III only
(e) I, II, and III

I have a doubt regarding option(III) of the stem,below is my explanation:
Given : K^2-t^2--> odd
it means (k+t)(k-t) both are odd.
take option 3 we have to chek whether k^2+t^2 is odd or even.
k^2+t^2=(k+t)^2-(k-t)^2
= k^2+t^2+2kt-k^2-t^2+2kt
=4kt

Here as 4 is an even number, and any odd number multiplied by an even results in an even number.

Please let me know whether this is correct as i had interpreted or not. and provide a suitable explanation.


The red part is not correct. k^2+t^2 does not equal to 4kt.

If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III

k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Check all options:
I. k + t + 2 --> even+odd+even=odd or odd+even+even=odd. Discard;
II. k^2 + 2kt + t^2 --> even+even+odd=odd or odd+even+even=odd. Discard;
III. k^2 + t^2 --> even+odd=odd or odd+even=odd. Discard.

Answer: A.


Hi Bunuel,
You've mentioned that if k^2–t^2 is an odd integer means that either k is even and t is odd or k is odd and t is even.

Isn't a 3rd case also possible where K is odd and T is 0?


Well, since 0 is an even number, then this scenario falls into the case when k=odd and t=even.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 31 Mar 2013
Posts: 71
Location: United States
Followers: 0

Kudos [?]: 26 [0], given: 109

Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 07 Sep 2013, 23:50
Thank you, Bunuel.
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 12908
Followers: 563

Kudos [?]: 158 [0], given: 0

Premium Member
Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 21 Oct 2016, 08:01
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Math Forum Moderator
User avatar
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 2145
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
Followers: 83

Kudos [?]: 568 [0], given: 311

GMAT ToolKit User Premium Member CAT Tests
Re: If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 21 Oct 2016, 10:29
avenger wrote:
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III


Plug in some no's and check

k = 7 , t = 4

I. k + t + 2 = 7 + 4 + 2 = 13 ( Odd )
II. k^2 + 2kt + t^2 = 7^2 + 2*7*4 + 4^2 = 121 ( Odd )
III. k^2 + t^2 = 7^2 + 4^2 = 65 ( Odd )

k = 6 , t = 3

I. k + t + 2 = 6 + 3 + 2 = 11 ( Odd )
II. k^2 + 2kt + t^2 = 6^2 + 2*6*3 + 3^2 = 81 ( Odd )
III. k^2 + t^2 = 6^2 + 3^2 = 45 ( Odd )

Check in all the cases the answer will be ODD, hence we will not get even number..

Answer will be (A) None...

_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

Expert Post
e-GMAT Representative
User avatar
Joined: 04 Jan 2015
Posts: 427
Followers: 126

Kudos [?]: 1025 [0], given: 84

If k and t are integers and k^2 – t^2 is an odd integer [#permalink]

Show Tags

New post 07 Nov 2016, 04:06
avenger wrote:
If k and t are integers and k^2 – t^2 is an odd integer, which of the following must be an even integer?

I. k + t + 2
II. k^2 + 2kt + t^2
III. k^2 + t^2

A. None
B. I only
C. II only
D. III only
E. I, II, and III


Here is a methodical approach to solve this question:

Given Info:
\(k^2 – t^2\) is odd.

Inferences:
\(k^2 – t^2\) can be written as \((k – t)*(k + t)\)
Since the product is odd, both \((k – t)\) and \((k + t)\) must be odd.

So, \((k – t)\) is odd ……. (1)
\((k + t)\) is odd …… (2)

The above also implies that exactly one of {\(k\), \(t\)} is odd and the other is even …… (3)


Approach:
We’ll use the above inferences to identify the even-odd nature of each of the given expressions.

Working Out:

(I) \(k + t + 2\)
We already determined that \((k + t)\)is odd.
So, adding an even number (\(2\)) to \((k + t)\) won’t change its even-odd nature.

Think: \(3\)is odd. \(3+2 = 5\) is also odd.

(II) \(k^2 + 2kt + t^2\)
This is simply \((k + t)^2\)

Since \((k + t)\) is odd, its square is also odd.

Think: \(3\) is odd. \(3^2 = 9\) is odd).

(You can also look at this case as: product of two odd integers is always odd).

(III) \(k^2 + t^2\)

\(k^2 + t^2\) will have the same even-odd nature as\(k^2 – t^2\).
So, \(k^2 + t^2\) is also odd.

Think: \((a + b)\) will have the same even-odd nature as\((a – b)\).
Eg: \(5-2 = 3\) (odd) \(5 + 2 = 7\) (odd)

Since none of the given expressions are even, the correct answer is option A.

Hope this helps. :)

Cheers,
Krishna
_________________

Image


| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

If k and t are integers and k^2 – t^2 is an odd integer   [#permalink] 07 Nov 2016, 04:06
    Similar topics Author Replies Last post
Similar
Topics:
4 Experts publish their posts in the topic If n is a positive integer and k + 2 = 3^n, which of the fol Bunuel 10 16 Mar 2014, 23:20
10 Experts publish their posts in the topic If k is an integer and k^2 - 4 > 45, then which of the follo jafeer 6 28 Sep 2013, 02:42
5 If k is a positive integer, and if the units' digit of k^2 manishuol 4 01 May 2013, 10:10
8 Experts publish their posts in the topic For how many integers k is k^2 = 2^k ? metallicafan 11 03 Jan 2012, 05:35
26 Experts publish their posts in the topic If k = 2n - 1, where n is an integer, what is the remainder jpr200012 12 19 Jun 2010, 19:05
Display posts from previous: Sort by

If k and t are integers and k^2 – t^2 is an odd integer

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.