Find all School-related info fast with the new School-Specific MBA Forum

It is currently 26 Apr 2015, 22:38

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If K is the sum of reciprocals of the consecutive integers

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Director
Director
avatar
Joined: 29 Nov 2012
Posts: 926
Followers: 12

Kudos [?]: 436 [1] , given: 543

If K is the sum of reciprocals of the consecutive integers [#permalink] New post 07 Jan 2013, 02:05
1
This post received
KUDOS
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

68% (02:23) correct 32% (01:15) wrong based on 268 sessions
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8
[Reveal] Spoiler: OA

_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Expert Post
11 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27058
Followers: 4185

Kudos [?]: 40447 [11] , given: 5421

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 07 Jan 2013, 02:14
11
This post received
KUDOS
Expert's post
5
This post was
BOOKMARKED
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Given that \(K=\frac{1}{43}+\frac{1}{44}+\frac{1}{45}+\frac{1}{46}+\frac{1}{47}+\frac{1}{48}\). Notice that 1/43 is the larges term and 1/48 is the smallest term.

If all 6 terms were equal to 1/43, then the sum would be 6/43=~1/7, but since actual sum is less than that, then we have that K<1/7.

If all 6 terms were equal to 1/48, then the sum would be 6/48=1/8, but since actual sum is more than that, then we have that K>1/8.

Therefore, 1/8<K<1/7. So, K must be closer to 1/8 than it is to 1/6.

Answer: C.

Similar question to practice from OG: m-is-the-sum-of-the-reciprocals-of-the-consecutive-integers-143703.html

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

2 KUDOS received
Moderator
Moderator
User avatar
Joined: 02 Jul 2012
Posts: 1227
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE: Engineering (Energy and Utilities)
Followers: 79

Kudos [?]: 836 [2] , given: 116

Premium Member
Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 07 Jan 2013, 02:15
2
This post received
KUDOS
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8

I believe a good approximation would be to take the mean, reciprocal of that and multiply by 6 (No of numbers being added)

= \(\frac{6}{45.5}\) which is closest to \(\frac{6}{48}\) (\frac{1}{6} would be \(\frac{6}{36}\) and \(\frac{1}{10}\)would be \(\frac{6}{60}\)) and hence \(\frac{1}{8}\)
_________________

Did you find this post helpful?... Please let me know through the Kudos button.

Thanks To The Almighty - My GMAT Debrief

GMAT Reading Comprehension: 7 Most Common Passage Types

Director
Director
avatar
Joined: 29 Nov 2012
Posts: 926
Followers: 12

Kudos [?]: 436 [0], given: 543

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 07 Jan 2013, 02:17
Bunuel wrote:
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Given that \(K=\frac{1}{43}+\frac{1}{44}+\frac{1}{45}+\frac{1}{46}+\frac{1}{47}+\frac{1}{48}\). Notice that 1/43 is the larges term and 1/48 is the smallest term.

If all 6 terms were equal to 1/43, then the sum would be 6/43=~1/7, but since actual sum is less than that, then we have that K<1/7.

If all 6 terms were equal to 1/48, then the sum would be 6/48=1/8, but since actual sum is more than that, then we have that K>1/8.

Therefore, 1/8<K<1/7. So, K must be closer to 1/8 than it is to 1/6.

Answer: C.

Similar question to practice from OG: m-is-the-sum-of-the-reciprocals-of-the-consecutive-integers-143703.html

Hope it helps.


I solved till that part then couldn't decide can you explain that step in detail.
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Expert Post
1 KUDOS received
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Status: Preparing for the another shot...!
Joined: 03 Feb 2011
Posts: 1425
Location: India
Concentration: Finance, Marketing
GPA: 3.75
Followers: 142

Kudos [?]: 765 [1] , given: 62

GMAT ToolKit User Premium Member
Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 07 Jan 2013, 02:18
1
This post received
KUDOS
Expert's post
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


The numbers are \(1/43 + 1/44+ 1/45 + 1/46 + 1/47 + 1/48\).
The easiest method is to find smart numbers.
If you consider each of the numbers as \(1/42\), then there sum will be \(6/42\) or \(1/7\). Remember that since we chose a higher number than those given, hence the actual sum will be smaller than \(1/7\).
Now consider each of the numbers \(1/48\). Then in such case, the sum will be \(6/48\) or \(1/8\). Remember that since we chose a smaller number than those given, hence the actual sum will be greater than \(1/8\).
Therefore the sum lies between \(1/7\) and \(1/8\). Hence among teh answer choices, the sum is closest to \(1/8\).
+1C
_________________

Prepositional Phrases Clarified|Elimination of BEING| Absolute Phrases Clarified
Rules For Posting
www.Univ-Scholarships.com

Expert Post
1 KUDOS received
e-GMAT Representative
User avatar
Joined: 02 Nov 2011
Posts: 1833
Followers: 1435

Kudos [?]: 4323 [1] , given: 210

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 08 Jan 2013, 01:29
1
This post received
KUDOS
Expert's post
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Hi,

Well all other approaches are correct. Here is one more. A little less calculation intensive.

From 1/43 to 1/48, there are 6 #.

=> We can infer that sum of 6 # of 1/40s > Sum of (1/43+/1/44+......+1/48) > Sum of 6 # of 1/50s

=>So, 6/40 > Sum of (1/43+/1/44+......+1/48) > 6/50

=> 1/6.66 > Sum of (1/43+/1/44+......+1/48) > 1/8.33

=> 1/6.66 > 1/ (6.66< Denominator < 8.33) > 1/8.33

Only option available is C. Answer is 1/8.

-Shalabh Jain
_________________

Learn how eGMATers improved their GMAT scores by 100+ points - Click here

Learn about our newly released Quant Online course here.

Director
Director
avatar
Joined: 29 Nov 2012
Posts: 926
Followers: 12

Kudos [?]: 436 [0], given: 543

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 08 Jan 2013, 04:08
egmat wrote:
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Hi,

Well all other approaches are correct. Here is one more. A little less calculation intensive.

From 1/43 to 1/48, there are 6 #.

=> We can infer that sum of 6 # of 1/40s > Sum of (1/43+/1/44+......+1/48) > Sum of 6 # of 1/50s

=>So, 6/40 > Sum of (1/43+/1/44+......+1/48) > 6/50

=> 1/6.66 > Sum of (1/43+/1/44+......+1/48) > 1/8.33

=> 1/6.66 > 1/ (6.66< Denominator < 8.33) > 1/8.33

Only option available is C. Answer is 1/8.

-Shalabh Jain


Thanks this made it clear I was confused between those 2 options.
_________________

Click +1 Kudos if my post helped...

Amazing Free video explanation for all Quant questions from OG 13 and much more http://www.gmatquantum.com/og13th/

GMAT Prep software What if scenarios gmat-prep-software-analysis-and-what-if-scenarios-146146.html

Expert Post
e-GMAT Representative
User avatar
Joined: 02 Nov 2011
Posts: 1833
Followers: 1435

Kudos [?]: 4323 [0], given: 210

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 08 Jan 2013, 22:24
Expert's post
fozzzy wrote:
egmat wrote:
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Hi,

Well all other approaches are correct. Here is one more. A little less calculation intensive.

From 1/43 to 1/48, there are 6 #.

=> We can infer that sum of 6 # of 1/40s > Sum of (1/43+/1/44+......+1/48) > Sum of 6 # of 1/50s

=>So, 6/40 > Sum of (1/43+/1/44+......+1/48) > 6/50

=> 1/6.66 > Sum of (1/43+/1/44+......+1/48) > 1/8.33

=> 1/6.66 > 1/ (6.66< Denominator < 8.33) > 1/8.33

Only option available is C. Answer is 1/8.

-Shalabh Jain


Thanks this made it clear I was confused between those 2 options.


Thank you. By the way do not forget to attend following event this weekend to learn how to improve by up to 70 points in 25 days. Pl. click to know more.

[Reveal] Spoiler:
Image



-Shalabh Jain
_________________

Learn how eGMATers improved their GMAT scores by 100+ points - Click here

Learn about our newly released Quant Online course here.

Manager
Manager
avatar
Joined: 11 Aug 2012
Posts: 135
Schools: HBS '16, Stanford '16
Followers: 0

Kudos [?]: 43 [0], given: 16

If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 13:23
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

a) \(\frac{1}{12}\)

b) \(\frac{1}{10}\)

c) \(\frac{1}{8}\)

d) \(\frac{1}{6}\)

e) \(\frac{1}{4}\)
2 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1125
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 139

Kudos [?]: 1344 [2] , given: 219

GMAT ToolKit User
Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 13:30
2
This post received
KUDOS
What is the sum of \(\frac{1}{43}+ ... +\frac{1}{48}\)?

\(\frac{1}{43}(1+\frac{43}{44}+\frac{43}{45}+\frac{43}{46}+\frac{43}{47}+\frac{43}{48})\)
we can rewrite as: \(\frac{1}{43}(1+1+1+1+1+1)=\frac{6}{43}\)

6/43 is something more than 7, so is colse to 8
\(\frac{6}{43}=(almost)\frac{1}{8}\)
C
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Expert Post
MBA Section Director
User avatar
Joined: 19 Mar 2012
Posts: 2399
Location: India
GPA: 3.8
WE: Marketing (Energy and Utilities)
Followers: 864

Kudos [?]: 4616 [0], given: 1303

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 13:44
Expert's post
danzig wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

a) \(\frac{1}{12}\)

b) \(\frac{1}{10}\)

c) \(\frac{1}{8}\)

d) \(\frac{1}{6}\)

e) \(\frac{1}{4}\)


I would look at it like this

K < 6/43 approx 1/7
K > 6/48 approx 1/8

So K is a value between 1/7 and 1/8 so C
_________________

My GMAT Resources
V30-V40: How to do it! | GMATPrep SC | GMATPrep CR | GMATPrep RC | Critical Reasoning Megathread | CR: Numbers and Statistics | CR: Weaken | CR: Strengthen | CR: Assumption | SC: Modifier | SC: Meaning | SC: SV Agreement | RC: Primary Purpose | PS/DS: Numbers and Inequalities | PS/DS: Combinatorics and Coordinates

My MBA Resources
Everything about the MBA Application | Over-Represented MBA woes | Fit Vs Rankings | Low GPA: What you can do | Letter of Recommendation: The Guide | Indian B Schools accepting GMAT score | Why MBA?

My Reviews
Veritas Prep Live Online

Manager
Manager
avatar
Joined: 11 Aug 2012
Posts: 135
Schools: HBS '16, Stanford '16
Followers: 0

Kudos [?]: 43 [0], given: 16

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 14:06
Bunuel wrote:
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Given that \(K=\frac{1}{43}+\frac{1}{44}+\frac{1}{45}+\frac{1}{46}+\frac{1}{47}+\frac{1}{48}\). Notice that 1/43 is the larges term and 1/48 is the smallest term.

If all 6 terms were equal to 1/43, then the sum would be 6/43=~1/7, but since actual sum is less than that, then we have that K<1/7.

If all 6 terms were equal to 1/48, then the sum would be 6/48=1/8, but since actual sum is more than that, then we have that K>1/8.

Therefore, 1/8<K<1/7. So, K must be closer to 1/8 than it is to 1/6.

Answer: C.

Similar question to practice from OG: m-is-the-sum-of-the-reciprocals-of-the-consecutive-integers-143703.html

Hope it helps.



Bunuel, I understand your method. However, how can we know that the distance between k and 1/8 is shorter than the distance between k and 1/6. For example, if k were almost 1/7, we would have to calculate the distance between 1/8 and 1/7 and also the distance between 1/7 and 1/6.
I make this comment because the GMAT Prep explains that point, but it does that in a complex way.
Thanks!
SVP
SVP
User avatar
Joined: 05 Jul 2006
Posts: 1519
Followers: 5

Kudos [?]: 114 [0], given: 39

GMAT ToolKit User
Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 14:56
My take

k = 1/43 +1/44 + 1/45 + 1/46 + 1/47 + 1/48 approx = 3/45 + 3/48 = 3/45 (1+45/48) = 1/5 (1 + 15/19) = 1/5 (1 + 15/20) = 1/5 (1+3/4) = 7/4*1/5 = 7/9 higher than 7/10 and lower than 8/10

Closest answer is 1/8
Manager
Manager
User avatar
Joined: 07 May 2012
Posts: 76
Location: United States
Followers: 2

Kudos [?]: 65 [0], given: 23

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 15:52
1/43 , 1/44 , 1/45 , 1/46 , 1/47 , 1/48

Hypothetically , assume all 6 Numbers to be 1/43
Hence sum of it would result in = 6/43 ( almost equals 1/7 , or slightly less than 1/7 - )

If all 6 nos were to be 1/48 ... Sum of which would result in 6/48 = 1/8 .

Hence answer should lie between 1/7 and 1/8

------------ 1/6 ------------------------- 1/7--------------(answer)--------------1/8 .

The only option that satisfies this criteria is option C i.e 1/8

Hope that helps
-Jyothi
_________________

Jyothi hosamani

Intern
Intern
avatar
Joined: 18 Nov 2011
Posts: 37
Concentration: Strategy, Marketing
GMAT Date: 06-18-2013
GPA: 3.98
Followers: 0

Kudos [?]: 8 [0], given: 0

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 26 Apr 2013, 16:13
My method:

\(\frac{1}{43}\) through \(\frac{1}{48}\) are all very close to \(\frac{1}{50}\) (we are dealing with very small fractions at this point, so the differences are nearly none)

So I added all six together as \(\frac{1}{50}\) each, giving a total of \(\frac{6}{50}\). This reduces to \(\frac{3}{25}\), which is near \(\frac{3}{24}=\frac{1}{8}\)

Answer is C
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 27058
Followers: 4185

Kudos [?]: 40447 [0], given: 5421

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 27 Apr 2013, 04:14
Expert's post
danzig wrote:
Bunuel wrote:
fozzzy wrote:
If K is the sum of reciprocals of the consecutive integers from 43 to 48, inclusive, then K is closest in value to which of the following?

A. 1/12
B. 1/10
C. 1/8
D. 1/6
E. 1/4

How do we decide between 1/6 and 1/8


Given that \(K=\frac{1}{43}+\frac{1}{44}+\frac{1}{45}+\frac{1}{46}+\frac{1}{47}+\frac{1}{48}\). Notice that 1/43 is the larges term and 1/48 is the smallest term.

If all 6 terms were equal to 1/43, then the sum would be 6/43=~1/7, but since actual sum is less than that, then we have that K<1/7.

If all 6 terms were equal to 1/48, then the sum would be 6/48=1/8, but since actual sum is more than that, then we have that K>1/8.

Therefore, 1/8<K<1/7. So, K must be closer to 1/8 than it is to 1/6.

Answer: C.

Similar question to practice from OG: m-is-the-sum-of-the-reciprocals-of-the-consecutive-integers-143703.html

Hope it helps.



Bunuel, I understand your method. However, how can we know that the distance between k and 1/8 is shorter than the distance between k and 1/6. For example, if k were almost 1/7, we would have to calculate the distance between 1/8 and 1/7 and also the distance between 1/7 and 1/6.
I make this comment because the GMAT Prep explains that point, but it does that in a complex way.
Thanks!


Even if K=1/7, still the distance between 1/8 and 1/7 is less than the distance between 1/7 and 1/6.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

GMAT Club Premium Membership - big benefits and savings

1 KUDOS received
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1857
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Followers: 22

Kudos [?]: 867 [1] , given: 193

If K is the sum of reciprocals of the consecutive integers [#permalink] New post 29 Apr 2013, 00:55
1
This post received
KUDOS
I did in this way
\(\frac{1}{43} + \frac{1}{44} + \frac{1}{45} + \frac{1}{46} + \frac{1}{47} + \frac{1}{48}\)

\(= (\frac{1}{43} + \frac{1}{48}) + (\frac{1}{44} + \frac{1}{47}) + (\frac{1}{45} + \frac{1}{46})\) .... Grouping the denominator's whose addition is same (91)

\(= \frac{1}{24} + \frac{1}{24} + \frac{1}{24}\) (Approx)

\(= \frac{3}{24}\) (Approx)

\(= \frac{1}{8}\)
Answer = C
_________________

Kindly press "+1 Kudos" to appreciate :)


Last edited by PareshGmat on 03 Aug 2014, 22:01, edited 1 time in total.
Manager
Manager
avatar
Joined: 09 Nov 2012
Posts: 67
Followers: 0

Kudos [?]: 51 [0], given: 40

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 13 Oct 2013, 00:51
K = 1/43 + 1/44 + 1/45 + 1/46 + 1/47 + 1/48

(48 + 43)/2 = 91/2 --> this is the denominator of my middle number

Therefore, K = 6 * 1/(91/2) = (6 * 2)/91 = ~2/15.x = ~1/8.
Manager
Manager
User avatar
Joined: 11 Sep 2013
Posts: 143
Concentration: Finance, Finance
Followers: 0

Kudos [?]: 21 [0], given: 122

Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 02 Jan 2014, 07:06
How about percentage?
If we see 1/43 to 1/48 each is greater than 2%. So sum will be slightly greater than 2*6= 12%
Now only option C is slightly more than 12%.
So answer is C
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 4679
Followers: 291

Kudos [?]: 52 [0], given: 0

Premium Member
Re: If K is the sum of reciprocals of the consecutive integers [#permalink] New post 28 Jan 2015, 10:50
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: If K is the sum of reciprocals of the consecutive integers   [#permalink] 28 Jan 2015, 10:50
    Similar topics Author Replies Last post
Similar
Topics:
M is the sum of the reciprocals of the consecutive integers from mike34170 0 08 Jul 2013, 05:59
67 Experts publish their posts in the topic M is the sum of the reciprocals of the consecutive integers Walkabout 19 06 Dec 2012, 08:42
9 M is the sum of the reciprocals of the consecutive integers sarb 2 07 Jun 2012, 00:14
12 Experts publish their posts in the topic If S is the sum of reciprocals of a list of consecutive gmihir 9 16 May 2012, 08:35
If D is the sum of the reciprocals of the consecutive jet1445 2 28 Jul 2007, 08:45
Display posts from previous: Sort by

If K is the sum of reciprocals of the consecutive integers

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.