Find all School-related info fast with the new School-Specific MBA Forum

It is currently 25 Sep 2016, 17:59
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If k, m, and t are positive integers and k/6 + m/4 = t/12

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
Manager
Manager
avatar
Joined: 16 Feb 2012
Posts: 237
Concentration: Finance, Economics
Followers: 7

Kudos [?]: 240 [3] , given: 121

GMAT ToolKit User
If k, m, and t are positive integers and k/6 + m/4 = t/12 [#permalink]

Show Tags

New post 23 Feb 2012, 02:28
3
This post received
KUDOS
14
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

55% (02:27) correct 45% (01:27) wrong based on 308 sessions

HideShow timer Statistics

If k, m, and t are positive integers and k/6 + m/4 = t/12, do t and 12 have a common factor greater than 1?

(1) k is a multiple of 3.
(2) m is a multiple of 3.


In the explanation of this question they say that the sum of two multiples of 3 give the number that is also a multiple of 3.
Is that a general rule for any number? If someone can elaborate I would be grateful!
[Reveal] Spoiler: OA

_________________

Kudos if you like the post!

Failing to plan is planning to fail.

Expert Post
8 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34830
Followers: 6481

Kudos [?]: 82614 [8] , given: 10108

Re: General Math Question [#permalink]

Show Tags

New post 23 Feb 2012, 02:40
8
This post received
KUDOS
Expert's post
5
This post was
BOOKMARKED
Stiv wrote:
If k, m, and t are positive integers and \(\frac {k}{6} + \frac {m}{4} = \frac {t}{12}\) , do t and 12 have a common factor greater than 1?
(1) k is a multiple of 3.
(2) m is a multiple of 3.


In the explanation of this question they say that the sum of two multiples of 3 give the number that is also a multiple of 3.
Is that a general rule for any number? If someone can elaborate I would be grateful!


If k, m, and t are positive integers and \(\frac{k}{6} + \frac{m}{4} = \frac{t}{12}\), do t and 12 have a common factor greater than 1 ?

\(\frac{k}{6} + \frac{m}{4} = \frac{t}{12}\) --> \(2k+3m=t\).

(1) k is a multiple of 3 --> \(k=3x\), where \(x\) is a positive integer --> \(2k+3m=6x+3m=3(2x+m)=t\) --> \(t\) is multiple of 3, hence \(t\) and 12 have a common factor of 3>1. Sufficient.

(2) m is a multiple of 3 --> \(m=3y\), where \(y\) is a positive integer --> \(2k+3m=2k+9y=t\) --> \(t\) and 12 may or may not have a common factor greater than 1. Not sufficient.

Answer: A.

As for your question:
If integers \(a\) and \(b\) are both multiples of some integer \(k>1\) (divisible by \(k\)), then their sum and difference will also be a multiple of \(k\) (divisible by \(k\)):
Example: \(a=6\) and \(b=9\), both divisible by 3 ---> \(a+b=15\) and \(a-b=-3\), again both divisible by 3.

If out of integers \(a\) and \(b\) one is a multiple of some integer \(k>1\) and another is not, then their sum and difference will NOT be a multiple of \(k\) (divisible by \(k\)):
Example: \(a=6\), divisible by 3 and \(b=5\), not divisible by 3 ---> \(a+b=11\) and \(a-b=1\), neither is divisible by 3.

If integers \(a\) and \(b\) both are NOT multiples of some integer \(k>1\) (divisible by \(k\)), then their sum and difference may or may not be a multiple of \(k\) (divisible by \(k\)):
Example: \(a=5\) and \(b=4\), neither is divisible by 3 ---> \(a+b=9\), is divisible by 3 and \(a-b=1\), is not divisible by 3;
OR: \(a=6\) and \(b=3\), neither is divisible by 5 ---> \(a+b=9\) and \(a-b=3\), neither is divisible by 5;
OR: \(a=2\) and \(b=2\), neither is divisible by 4 ---> \(a+b=4\) and \(a-b=0\), both are divisible by 4.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Moderator
Moderator
User avatar
Joined: 25 Apr 2012
Posts: 728
Location: India
GPA: 3.21
WE: Business Development (Other)
Followers: 43

Kudos [?]: 629 [1] , given: 723

Premium Member Reviews Badge
Re: If k, m, and t are positive integers and k/6 + m/4 = t/12 [#permalink]

Show Tags

New post 26 Jun 2013, 02:09
1
This post received
KUDOS
Stiv wrote:
If k, m, and t are positive integers and k/6 + m/4 = t/12, do t and 12 have a common factor greater than 1?

(1) k is a multiple of 3.
(2) m is a multiple of 3.


In the explanation of this question they say that the sum of two multiples of 3 give the number that is also a multiple of 3.
Is that a general rule for any number? If someone can elaborate I would be grateful!



We can solve the given expression and get the following

(2k+3m)/12= t/12 ------> this implies t= 2k +3 m

From St 1 we have k is a multiple of 3 so the above equation is of the form t= 2*3*a+ 3m i.e t= 6a +3m where a is a positive integer (since K is a positive integer "a" cannot be zero)

thus t = 3( 2a+m)
if a =1, m=1 then t= 9 ; an 9 and 12 have 3 as common factor other than 1
similarly if a=2, m=1 we have t=15, and both 15 and 12 have 3 as common factor
since t has 3 as one of its factors and 12 also has 3 as one of its factor and therefore "t" and 12 will always have 3 as a factor other than 1

from St2 we have t= 2k+ 3*3b -----> t= 2k+9b where b is a positive integer

Here if k=1 and b =1, then t= 11; 11 and 12 do not have any common factor other than 1
but if k=3 and b=3 then we have t= 24 ; 24 and 12 have many common factor

therefore ans should be A
_________________


“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34830
Followers: 6481

Kudos [?]: 82614 [0], given: 10108

Re: If k, m, and t are positive integers and k/6 + m/4 = t/12 [#permalink]

Show Tags

New post 26 Jun 2013, 01:39
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

All DS Divisibility/Multiples/Factors questions to practice: search.php?search_id=tag&tag_id=354
All PS Divisibility/Multiples/Factors questions to practice: search.php?search_id=tag&tag_id=185

_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
User avatar
Joined: 28 Apr 2013
Posts: 159
Location: India
GPA: 4
WE: Medicine and Health (Health Care)
Followers: 1

Kudos [?]: 62 [0], given: 84

if k, m, and t are positive integers [#permalink]

Show Tags

New post 22 Jan 2014, 19:21
If k, m, and t are positive integers and k/6 + m/4 = t/12 do t and 12 have a common factor greater than 1?

1. k is a multiple of 3.

2. m is a multiple of 3.


Source- Private notes
_________________

Thanks for Posting

LEARN TO ANALYSE

+1 kudos if you like

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 34830
Followers: 6481

Kudos [?]: 82614 [0], given: 10108

Re: if k, m, and t are positive integers [#permalink]

Show Tags

New post 22 Jan 2014, 19:25
GMAT Club Legend
GMAT Club Legend
User avatar
Joined: 09 Sep 2013
Posts: 11673
Followers: 527

Kudos [?]: 143 [0], given: 0

Premium Member
Re: If k, m, and t are positive integers and k/6 + m/4 = t/12 [#permalink]

Show Tags

New post 01 Feb 2015, 05:33
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

VP
VP
User avatar
Joined: 12 Aug 2015
Posts: 1002
Followers: 18

Kudos [?]: 147 [0], given: 271

GMAT ToolKit User CAT Tests
Re: If k, m, and t are positive integers and k/6 + m/4 = t/12 [#permalink]

Show Tags

New post 16 Mar 2016, 06:53
Superb QUESTION
Here we need to write k as 3*p for some integer p so 3 must be in the GCD
hence A is sufficient
AS for statement 2 => t=5=> NO
for t=10=> YES
hence not sufficient
hence A
_________________

Give me a hell yeah ...!!!!!

Re: If k, m, and t are positive integers and k/6 + m/4 = t/12   [#permalink] 16 Mar 2016, 06:53
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic What is the value of [3(k + m) + 4k]/[2k + m]? mikemcgarry 1 08 Apr 2015, 14:16
5 Experts publish their posts in the topic If m and k are positive integers, is m!+8k a multiple of k? goodyear2013 3 23 Jun 2014, 07:06
13 Experts publish their posts in the topic m = 4n + 9, where n is a positive integer. What is the greatest common Smita04 8 14 Feb 2012, 05:16
10 Experts publish their posts in the topic If k, m, and t are positive integers and k/6 + m/4 = t/12, do t and 12 386390 5 20 Jun 2011, 07:55
1 If k is a positive integer and m is the product of the fi sudhir18n 7 19 Jun 2011, 07:01
Display posts from previous: Sort by

If k, m, and t are positive integers and k/6 + m/4 = t/12

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.