Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If line L passes through point (m, n) and (– m, – n), where m and n [#permalink]

Show Tags

31 Mar 2011, 05:20

2

This post received KUDOS

Pkit wrote:

157. If line L passes through point (m, n) and (– m, – n), where m and n are not 0, which of the following must be true? I. The slope of L is positive II. The slope of L is negative III. L exactly passes through 2 quadrants (A) I only (B) II only (C) III only (D) I and II only (E) II and III only

Equation of the line with slope m passing through point \((x_1,y_1)\) \(&\) \((x_2,y_2)\) \((y-y_1)=m(x-x_1)=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\)

We have the line that is passing through \((m,n)\) \(&\) \((-m,-n)\)

\(Slope=\frac{-n-n}{-m-m}=\frac{n}{m}\)

Equation of the line will be: \(y-n=\frac{n}{m}(x-m)\) \(y-n=\frac{n}{m}x-n\) \(y=\frac{n}{m}x\)

Thus we know that this line passes through the origin as the y-intercept is 0. This makes III true.

If we put, n=1 and m=1 \(y=x\); this line has a positive slope. We can count II out.

Put n=-1 and m=1 \(y=-x\); this line has negative slope. We can count I out.

Re: If line L passes through point (m, n) and (– m, – n), where m and n [#permalink]

Show Tags

31 Mar 2011, 07:56

1

This post received KUDOS

this means that L exactly passes through 2 quadrants. these quadrants are:1,3 or 2,4 <see picture;> and L:y=x (for quadrants 1&3)==>slop=1 (positive) and L:y=-x (for quadrants 2&4)==>slop=-1 (negative) therfore, the correct answer is C;

Attachments

sq.png [ 5.47 KiB | Viewed 1481 times ]

sq.png [ 4.98 KiB | Viewed 1479 times ]

_________________

(\ /) (O.o) (> <) This is Bunny. Copy Bunny into your signature to help him on his way to world domination

Re: If line L passes through point (m, n) and (– m, – n), where m and n [#permalink]

Show Tags

02 Mar 2016, 10:03

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Post-MBA I became very intrigued by how senior leaders navigated their career progression. It was also at this time that I realized I learned nothing about this during my...