If m and n are nonzero integers, is m^n an integer?

(1) n^m is positve

(2) n^m is an integer.

(1) n=-2, m=2; n^m=(-2)^2=4. +ve;

m^n=(2)^-2=1/4=0.25. Not an integer

n=1; m=1; n^m=1^1=1; +ve

m^n=1^1=1; Integer.

Not Sufficient.

(2) n=-2, m=2; n^m=(-2)^2=4. integer;

m^n=(2)^-2=1/4=0.25. Not an integer

n=1; m=1; n^m=1^1=1; integer

m^n=1^1=1; Integer.

Not Sufficient.

Combining both;

n=-2, m=2; n^m=(-2)^2=4. integer and +ve;

m^n=(2)^-2=1/4=0.25. Not an integer.

n=1; m=1; n^m=1^1=1; integer and +ve

m^n=1^1=1; Integer.

Ans: "E"

_________________

~fluke

GMAT Club Premium Membership - big benefits and savings