Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: If mv < pv< 0, is v > 0? [#permalink]
21 May 2012, 00:17
2
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
If mv < pv< 0, is v > 0?
Given: \(mv<pv<0\) --> two cases:
If \(v>0\) then when dividing by \(v\) we would have: \(m<p<0\); If \(v<0\) then when dividing by \(v\) we would have: \(m>p>0\) (flip the sign when dividing by negative value).
(1) m < p --> we have the first case, so \(v>0\). Sufficient. (2) m < 0 --> we have the first case, so \(v>0\). Sufficient.
Re: If mv < pv< 0, is v > 0? [#permalink]
23 May 2012, 01:49
If mv < pv< 0, is v > 0? from here, we know that: mv < 0 -> if m is +, V must be -, if m is - then v is + (they must be opposite to be negative) pv < 0 -> if p is +, V must be - ,if p is -, then v is + (they must be opposite to be negative) mv < pv -> if v is +, then m < p,if v is - then m > p (divide both side by v,dont forget to flip inequality sign when v is -)
(1) m < p --> so v>0. Sufficient. (2) m < 0 --> so v>0. Sufficient.
Re: If mv < pv< 0, is v > 0? [#permalink]
18 Oct 2014, 01:06
Bunuel wrote:
If mv < pv< 0, is v > 0?
Given: \(mv<pv<0\) --> two cases:
If \(v>0\) then when dividing by \(v\) we would have: \(m<p<0\); If \(v<0\) then when dividing by \(v\) we would have: \(m>p>0\) (flip the sign when dividing by negative value).
(1) m < p --> we have the first case, so \(v>0\). Sufficient. (2) m < 0 --> we have the first case, so \(v>0\). Sufficient.
Answer: D.
Hope it's clear.
I understood Bunuel's explanation for statement-1 but following values makes statement-1 insufficient. Please help me understand this:
(1) m<p
lets take v=1, m=-3, p=-2 it gives mv=-3, pv=-2 and hence does not violate mv<pv<0 as -3<-2<0, so v is +ve here lets take v=-1, m=3, p=2 it gives mv=-3, pv=-2 and hence does not violate mv<pv<0 as -3<-2<0 but v is -ve here
Thanks _________________
--------------------------------------------------------------- Target - 720-740 helpful post means press '+1' for Kudos!
Re: If mv < pv< 0, is v > 0? [#permalink]
18 Oct 2014, 01:13
Expert's post
1
This post was BOOKMARKED
HKD1710 wrote:
Bunuel wrote:
If mv < pv< 0, is v > 0?
Given: \(mv<pv<0\) --> two cases:
If \(v>0\) then when dividing by \(v\) we would have: \(m<p<0\); If \(v<0\) then when dividing by \(v\) we would have: \(m>p>0\) (flip the sign when dividing by negative value).
(1) m < p --> we have the first case, so \(v>0\). Sufficient. (2) m < 0 --> we have the first case, so \(v>0\). Sufficient.
Answer: D.
Hope it's clear.
I understood Bunuel's explanation for statement-1 but following values makes statement-1 insufficient. Please help me understand this:
(1) m<p
lets take v=1, m=-3, p=-2 it gives mv=-3, pv=-2 and hence does not violate mv<pv<0 as -3<-2<0, so v is +ve here lets take v=-1, m=3, p=2 it gives mv=-3, pv=-2 and hence does not violate mv<pv<0 as -3<-2<0 but v is -ve here
Thanks
m = 3 and p = 2 violate the first statement, which says that m < p. _________________
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...