Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If N is a negative, which of the following must be true? [#permalink]
13 Feb 2014, 09:37

Expert's post

Anasarah wrote:

If N is a negative, which of the following must be true?

I. \(N^3<N^2\) II. \(N+\frac{1}{N}<0\) III. \(N=\sqrt{N^2}\)

A. I only B. II only C. III only D. I and III only E. I and II only

If N is a negative, which of the following must be true?

I. \(N^3<N^2\) II. \(N+\frac{1}{N}<0\) III. \(N=\sqrt{N^2}\)

A. I only B. II only C. III only D. I and III only E. I and II only

I. \(N^3<N^2\). Since N is negative, then (N^3=negative) < (N^2=positive). Hence, this one must be true,

II. \(N+\frac{1}{N}<0\). Both N and 1/N are negative, the sum of two negative values is negative. The same here: must be true.

III. \(N=\sqrt{N^2}\). The square root function cannot give negative result: \(\sqrt{some \ expression}\geq{0}\). Negative N cannot equal to positive \(\sqrt{N^2}\). Never true.

Re: If N is a negative, which of the following must be true? [#permalink]
13 Feb 2014, 14:32

Expert's post

Bunuel, from an algebraic standpoint, if we manipulate Statement II like below, why does the inequality leave open the possibility that N^2 can be a negative fraction? I get why Neg + Neg < 0, but was wondering about the below. Thank you.

Re: If N is a negative, which of the following must be true? [#permalink]
14 Feb 2014, 00:48

Expert's post

m3equals333 wrote:

Bunuel, from an algebraic standpoint, if we manipulate Statement II like below, why does the inequality leave open the possibility that N^2 can be a negative fraction? I get why Neg + Neg < 0, but was wondering about the below. Thank you.

N+(1/N)<0 --> N<-(1/N) N^2>-1

Not following you... We are asked to find which of the options must be true while given that N is negative (negative integer, negative fraction, negative irrational number). For negative N, N +1/N < 0 must be true. Can you please elaborate what you mean? Thank you. _________________

Re: If N is a negative, which of the following must be true? [#permalink]
14 Feb 2014, 15:38

Expert's post

Sry, my question was more of a general one. Assuming n is neg, I was playing around with the inequality to see if I could manipulate it to coincide with what was already quite apparent (negative + negative = negative).

Basically, I subtracted the negative fraction to the opposite side of the inequality and then multiplied the denominator to the original side (flipping the inequality in the process with N neg). I ended up with n^2 which is is presumed to be positive. Everything seemingly checks out as the inequality says n^2 is > -1, however this includes >=0 n^2 >-1 as well, which seems erroneous.

I was just wondering how to interpret this and if I am making any missteps in my algebraic manipulations and/or thought process.

Thanks very much for your help/insight. _________________

Re: If N is a negative, which of the following must be true? [#permalink]
17 Feb 2014, 06:57

1

This post received KUDOS

Expert's post

m3equals333 wrote:

Sry, my question was more of a general one. Assuming n is neg, I was playing around with the inequality to see if I could manipulate it to coincide with what was already quite apparent (negative + negative = negative).

Basically, I subtracted the negative fraction to the opposite side of the inequality and then multiplied the denominator to the original side (flipping the inequality in the process with N neg). I ended up with n^2 which is is presumed to be positive. Everything seemingly checks out as the inequality says n^2 is > -1, however this includes >=0 n^2 >-1 as well, which seems erroneous.

I was just wondering how to interpret this and if I am making any missteps in my algebraic manipulations and/or thought process.

Thanks very much for your help/insight.

I guess you want to solve for which range of n, n+1/n<0 holds true...

\(n+\frac{1}{n}<0\) --> \(\frac{n^2+1}{n}=\frac{positive}{n}<0\) --> positive/n to be negative, n must be negative, thus \(n+\frac{1}{n}<0\) holds true for \(n<0\).

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

Although I have taken many lessons from Field Foundations that can be leveraged later, the lessons that will stick with me the strongest have been the emotional intelligence lessons...

Tick, tock, tick...the countdown to January 7, 2016 when orientation week kicks off. Been a tiring but rewarding journey so far and I really can’t wait to...