Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If @(n) is defined as the product of the cube root of n and the positive square root of n, then for what number n does @(n)=50 percent of n?

A. 16 B. 64 C. 100 D. 144 E. 729

Given: \(@(n)=\sqrt[3]{n}*\sqrt[2]{n}\). Question: if \(@(n)=0.5n\) then \(n=?\)

So we have that \(\sqrt[3]{n}*\sqrt[2]{n}=\frac{1}{2}*n\) --> \(2*\sqrt[3]{n}*\sqrt[2]{n}=n\) --> take to the 6th power --> \(64*n^2*n^3=n^6\) --> \(n=64\).

Just follow the rules of exponents. Answer will follow. Cube root is the power of 1/3. Square root is the power of 1/2

\(n^{\frac{1}{3}}*n^{\frac{1}{2}} = \frac{n}{2}\) You need to find n. So bring all n's together on one side of the equation and everything else on the other side.

the cube root of what integer power of 2 is closest to 50?

1)16 2) 17 3)18 4 ) 19 5) 20

can u pls help me in this by a quicker solution???????

Look at the powers of 2.

2^1 = 2 2^2 = 4 2^3 = 8 2^4 = 16 2^5 = 32 2^6 = 64 2^7 = 128 Since it is an exponential increase, the result increases much more as you go to higher and higher powers. Which powers of 2 are around 50? 2^5 = 32 2^6 = 64 50 is almost in the middle of the two of them but closer to 64. Also, the result increases more with higher powers so I would expect 50 to be almost 2^(5.6) or a little higher.

If you find the cube root of 2^18, you will get (2^18)^(1/3) = 2^6 If you find the cube root of 2^17, you will get (2^17)^(1/3) = 2^(5.667) This is the closest. Answer is 17.
_________________

Re: If @(n) is defined as the product of the cube root of n and [#permalink]

Show Tags

19 Jul 2014, 08:36

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If (n) is defined as the product of the cube root of n and [#permalink]

Show Tags

10 Mar 2015, 02:31

VeritasPrepKarishma wrote:

GMATD11 wrote:

From B and E whts wrong with E

Just follow the rules of exponents. Answer will follow. Cube root is the power of 1/3. Square root is the power of 1/2

\(n^{\frac{1}{3}}*n^{\frac{1}{2}} = \frac{n}{2}\) You need to find n. So bring all n's together on one side of the equation and everything else on the other side.

Just follow the rules of exponents. Answer will follow. Cube root is the power of 1/3. Square root is the power of 1/2

\(n^{\frac{1}{3}}*n^{\frac{1}{2}} = \frac{n}{2}\) You need to find n. So bring all n's together on one side of the equation and everything else on the other side.

Re: If @(n) is defined as the product of the cube root of n and [#permalink]

Show Tags

10 May 2016, 00:01

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...