Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Oct 2014, 06:17

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If n is positive, which of the following is equal to

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
avatar
Joined: 23 Jan 2006
Posts: 193
Followers: 1

Kudos [?]: 2 [0], given: 0

If n is positive, which of the following is equal to [#permalink] New post 28 Jun 2006, 05:36
1
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

75% (01:41) correct 25% (01:03) wrong based on 217 sessions
If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}
[Reveal] Spoiler: OA

Last edited by Bunuel on 16 Apr 2012, 01:05, edited 1 time in total.
Edited the question and added the OA
VP
VP
User avatar
Joined: 25 Nov 2004
Posts: 1497
Followers: 6

Kudos [?]: 31 [0], given: 0

Re: fraction [#permalink] New post 28 Jun 2006, 06:33
kook44 wrote:
If n is positive, which of the following is equal to 1/(sqrt(n+1) - sqrt(n))

A. 1
B. sqrt(2n+1)
C. sqrt(n+1) / sqrt(n)
D. sqrt(n+1) - sqrt(n)
E. sqrt(n+1) + sqrt(n)

= 1 / (sqrt(n+1) - sqrt(n))
multiply the expression by [sqrt(n+1) + sqrt(n)] / [sqrt(n+1) + sqrt(n)]
= [sqrt(n+1) + sqrt(n)] / [{sqrt(n+1)}^2 - {sqrt(n)}^2]
= [sqrt(n+1) + sqrt(n)] / [n + 1 - n]
= sqrt (n+1) + sqrt(n)

so E.
Manager
Manager
avatar
Joined: 30 May 2008
Posts: 76
Followers: 0

Kudos [?]: 14 [0], given: 26

Re: fraction [#permalink] New post 15 Apr 2012, 20:04
gmatmba wrote:
kook44 wrote:
If n is positive, which of the following is equal to 1/(sqrt(n+1) - sqrt(n))

A. 1
B. sqrt(2n+1)
C. sqrt(n+1) / sqrt(n)
D. sqrt(n+1) - sqrt(n)
E. sqrt(n+1) + sqrt(n)


1/(a-b) = (a+b)/(a^2 - b^2) = (a+b)/1 = E


Can someone please explain how it went from (a^2 - b^2) to just 1 in the denominator?? Thanks!!
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23351
Followers: 3603

Kudos [?]: 28705 [1] , given: 2811

Re: fraction [#permalink] New post 16 Apr 2012, 01:19
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
catty2004 wrote:
gmatmba wrote:
kook44 wrote:
If n is positive, which of the following is equal to 1/(sqrt(n+1) - sqrt(n))

A. 1
B. sqrt(2n+1)
C. sqrt(n+1) / sqrt(n)
D. sqrt(n+1) - sqrt(n)
E. sqrt(n+1) + sqrt(n)


1/(a-b) = (a+b)/(a^2 - b^2) = (a+b)/1 = E


Can someone please explain how it went from (a^2 - b^2) to just 1 in the denominator?? Thanks!!


If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: (a-b)(a+b)=a^2-b^2.

Multiple both numerator and denominator by \sqrt{n+1}+\sqrt{n}: \frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}.

Answer: E.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 06 Apr 2012
Posts: 28
Followers: 0

Kudos [?]: 9 [0], given: 40

Premium Member CAT Tests
Re: fraction [#permalink] New post 17 Nov 2012, 04:42
Quote:
If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: (a-b)(a+b)=a^2-b^2.

Multiple both numerator and denominator by \sqrt{n+1}+\sqrt{n}: \frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}.

Answer: E.


Bunuel - just wanted to clarify an aspect of the roots - the final answer of this problem is E and it is perfectly understood. However, if I want to simplify the \sqrt{n+1} + \sqrt{n} even more... theoretically I could "unroot" these expressions, so that I get 2n+1, however, as the answer B is clearly wrong (and I can see why), I want to but I struggle to understand how to "put the roots back" in the 2n+1 to get an equivalent of \sqrt{n+1} + \sqrt{n}. Any thoughts on this matter?

Thanks!

Last edited by ikokurin on 18 Nov 2012, 02:47, edited 2 times in total.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23351
Followers: 3603

Kudos [?]: 28705 [0], given: 2811

Re: fraction [#permalink] New post 17 Nov 2012, 04:51
Expert's post
ikokurin wrote:
Bu nuel wrote:
If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: (a-b)(a+b)=a^2-b^2.

Multiple both numerator and denominator by \sqrt{n+1}+\sqrt{n}: \frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}.

Answer: E.


Bunuel - just wanted to clarify an aspect of the roots - the final answer of this problem is E and it is perfectly understood. However, if I want to simplify the SQRT(n+1) + SQRT(n) even more... theoretically I could "unsquare" these expressions, so that I get 2n+1, however, as the answer B is clearly wrong (and I can see why), I struggle to understand how to "square back" the 2n+1 to get an equivalent of SQRT(n+1) + SQRT(n). Can you help me out or share your thoughts on the matter? Thanks!


I don't understand what you mean: how can you get 2n+1 from \sqrt{n+1}+\sqrt{n}?
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 06 Apr 2012
Posts: 28
Followers: 0

Kudos [?]: 9 [0], given: 40

Premium Member CAT Tests
Re: fraction [#permalink] New post 17 Nov 2012, 05:06
Quote:
I don't understand what you mean: how can you get 2n+1 from \sqrt{n+1}+\sqrt{n}?


I meant some people might get \sqrt{2n+1} which is the answer B. However, I can see why \sqrt{n+1}+\sqrt{n} is NOT equal \sqrt{2n+1} even though it might be tempting to simplify it to this form (and pick the wrong answer). But my question is can we simplify \sqrt{n+1}+\sqrt{n} further by "squaring" both terms and then "unsquaring" them/the expression back somehow... or what could be an equivalent of \sqrt{n+1}+\sqrt{n}?

Last edited by ikokurin on 18 Nov 2012, 02:39, edited 1 time in total.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23351
Followers: 3603

Kudos [?]: 28705 [1] , given: 2811

Re: fraction [#permalink] New post 17 Nov 2012, 05:19
1
This post received
KUDOS
Expert's post
ikokurin wrote:
I meant some people might get SQRT(2n+1) which is the answer B. However, I can see why SQRT(n+1) + SQRT(n) is NOT equal SQRT(2n+1) even though it might be tempting to simplify it to this form (and pick the wrong answer). But my question is can we simplify SQRT(n+1) + SQRT(n) further by "squaring" both terms and then "squarerooting" them again somehow... or what could be an equivalent of SQRT(n+1) + SQRT(n)?


\sqrt{n+1}+\sqrt{n} is the simplest form. If you square it you'll get (\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}. You cannot take square root from this expression to get anything better than \sqrt{n+1}+\sqrt{n}.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 06 Apr 2012
Posts: 28
Followers: 0

Kudos [?]: 9 [0], given: 40

Premium Member CAT Tests
Re: fraction [#permalink] New post 17 Nov 2012, 05:37
Quote:
\sqrt{n+1}+\sqrt{n} is the simplest form. If you square it you'll get (\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}. You cannot take square root from this expression to get anything better than \sqrt{n+1}+\sqrt{n}.

Hope it's clear.


I see. What you are saying is clear but your answer does not exactly address what I am after. I can see that (\sqrt{n+1}+\sqrt{n})^2 only complicates it further. Sorry to be pertinacious on this - if we do (\sqrt{n+1})^2+(\sqrt{n})^2 => we will get n+1 + n = 2n + 1 => can we "undo" the expression 2n + 1 somehow to get the equivalent of \sqrt{n+1}+\sqrt{n}? I promise this is the last one:)

P.S. Also, please let me know if it would be better to send a PM on related "clarifying" questions...

Last edited by ikokurin on 18 Nov 2012, 02:32, edited 1 time in total.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23351
Followers: 3603

Kudos [?]: 28705 [0], given: 2811

Re: fraction [#permalink] New post 17 Nov 2012, 05:45
Expert's post
ikokurin wrote:
\sqrt{n+1}+\sqrt{n} is the simplest form. If you square it you'll get (\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}. You cannot take square root from this expression to get anything better than \sqrt{n+1}+\sqrt{n}.

Hope it's clear.


I see. What you are saying is clear but your answer does not exactly address what I am after. Sorry to be pertinacious on this but I was wondering if we can do (SQRT(n+1))^2 + (SQRT(n))^2 => we will get n+1 + n = 2n + 1 => can we "undo" the expression 2n + 1 somehow to get the equivalent of SQRT(n+1) + SQRT(n)? I promise this is the last one:) Also, please let me know if it would be better to send a PM on related "clarifying" questions...[/quote]

The answer is no, these expressions are not equal.

P.S. Please use formatting, check here: rules-for-posting-please-read-this-before-posting-133935.html#p1096628
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 06 Apr 2012
Posts: 28
Followers: 0

Kudos [?]: 9 [0], given: 40

Premium Member CAT Tests
Re: fraction [#permalink] New post 17 Nov 2012, 17:44
Quote:
The answer is no, these expressions are not equal.

P.S. Please use formatting, check here: rules-for-posting-please-read-this-before-posting-133935.html#p1096628



I understand they are not equal, thanks for help. So I take away there is no way to go from 2n+1 (obtained after squaring both terms ((\sqrt{n+1})^2 + (\sqrt{n})^2) into something else that could be an equivalent of\sqrt{n+1} + \sqrt{n}. As mentioned above, for those having issues with exponents/roots, it is possible to make a mistake of simplifying (\sqrt{n+1})^2 + (\sqrt{n})^2 into \sqrt{2n+1} (which is incorrect); nevertheless I wanted to see if there was a way to do something about 2n+1 to make it equal to \sqrt{n+1} + \sqrt{n}. For some reason, having inner desire to combine those n terms to make it all look nicer, it bugs me that leaving the answer as \sqrt{n+1} + \sqrt{n} is all we can do about this equation; especially after I saw some tricks/solutions relating to the tricky exponent problems and how one can do "wonders" with squaring and unsquaring things :) I was thinking about simplifying this thing into something like, obviously grossly exaggerated, ^4\sqrt{2n+1} or \sqrt{2n}+\sqrt{1}, etc., by "squarerooting" 2n+1 back somehow. But again I know the previous examples are plain wrong, just giving an example of what one can go through working through possibilities. Anyhow, enough of this rumble, let me know if you have anything to add...and thanks much for patience.

Regards,
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 16

Kudos [?]: 202 [0], given: 11

GMAT ToolKit User
Re: If n is positive, which of the following is equal to [#permalink] New post 11 Dec 2012, 03:33
\frac{1}{\sqrt{n+1}-\sqrt{n}}

\frac{1}{\sqrt{n+1}-\sqrt{n}} * \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}


\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}

\frac{\sqrt{n+1}+\sqrt{n}}{1}




Answer: E
_________________

Impossible is nothing to God.

Intern
Intern
avatar
Joined: 03 Jan 2013
Posts: 15
Followers: 0

Kudos [?]: 0 [0], given: 48

Re: If n is positive, which of the following is equal to [#permalink] New post 23 Jan 2013, 07:27
I have a quick question on this ..when the initial fraction was rationalized you used:

\sqrt{n+1}+ \sqrt{n} / \sqrt{n+1}+ \sqrt{n}

did you change the sign from negative to positive since the question stated "n" is a positive number. Wouldn't you have to use the same denominator when Rationalizing a fraction?
Expert Post
4 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4877
Location: Pune, India
Followers: 1151

Kudos [?]: 5348 [4] , given: 165

Re: If n is positive, which of the following is equal to [#permalink] New post 23 Jan 2013, 19:23
4
This post received
KUDOS
Expert's post
pharm wrote:
I have a quick question on this ..when the initial fraction was rationalized you used:

\sqrt{n+1}+ \sqrt{n} / \sqrt{n+1}+ \sqrt{n}

did you change the sign from negative to positive since the question stated "n" is a positive number. Wouldn't you have to use the same denominator when Rationalizing a fraction?


When there is an irrational number in the denominator, you rationalize it by multiplying it with its complement i.e. if it is \sqrt{a} + \sqrt{b} in the denominator, you will multiply by \sqrt{a} - \sqrt{b}. This is done to use the algebraic identity (a + b)(a - b) = a^2 - b^2. When a and b are irrational, a^2 and b^2 become rational (given we are dealing with only square roots)

To keep the fraction same, you need to multiply the numerator with the same number as well.

An example will make it clear:

Rationalize

\frac{3}{{\sqrt{2} - 1}}

= \frac{3}{{\sqrt{2} - 1}} * \frac{\sqrt{2} + 1}{\sqrt{2} + 1}

= \frac{3*(\sqrt{2} + 1)}{(\sqrt{2})^2 - 1^2}

= \frac{3*(\sqrt{2} + 1)}{2 - 1}

The denominator has become rational.

Similarly, if the denominator has \sqrt{a} - \sqrt{b}, you will multiply by \sqrt{a} + \sqrt{b}.

In this question too, you can substitute n = 1. The given expression becomes \frac{1}{{\sqrt{2} - 1}}
Rationalize it and you will get \sqrt{2} + 1. Put n = 1 in the options. Only option (E) gives you \sqrt{2} + 1.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 03 Jan 2013
Posts: 15
Followers: 0

Kudos [?]: 0 [0], given: 48

Re: If n is positive, which of the following is equal to [#permalink] New post 28 Jan 2013, 07:51
Thanks Karishma that cleared things up
SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1727
Location: United States
Concentration: Finance
GMAT 1: 710 Q48 V39
WE: Corporate Finance (Investment Banking)
Followers: 14

Kudos [?]: 189 [0], given: 293

GMAT ToolKit User
Re: If n is positive, which of the following is equal to [#permalink] New post 22 Nov 2013, 06:12
kook44 wrote:
If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}


Isn't it much easier to just pick n=1 and then look for target in answer choices?

Cheers!
J :)
Manager
Manager
avatar
Joined: 25 Oct 2013
Posts: 173
Followers: 0

Kudos [?]: 25 [0], given: 56

Re: If n is positive, which of the following is equal to [#permalink] New post 22 Nov 2013, 07:01
jlgdr wrote:
kook44 wrote:
If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}


Isn't it much easier to just pick n=1 and then look for target in answer choices?

Cheers!
J :)


What if more than one answer choice gives you same value? first, we have to try original expression with 1 and try each of the choices with 1. If we are lucky we have only one choice matching. but what if there are 2 or even 3 answer choices? we would then have to pick another number. Personally I feel solving it is faster in this case.

Sometimes number picking works faster. knowing when to use number picking is the difficult part.
_________________

Click on Kudos if you liked the post!

Practice makes Perfect.

SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1727
Location: United States
Concentration: Finance
GMAT 1: 710 Q48 V39
WE: Corporate Finance (Investment Banking)
Followers: 14

Kudos [?]: 189 [0], given: 293

GMAT ToolKit User
Re: If n is positive, which of the following is equal to [#permalink] New post 22 Nov 2013, 07:29
Ya I guess your right after solving the way Bunuel did it took less than 20 secs

Posted from my mobile device Image
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4877
Location: Pune, India
Followers: 1151

Kudos [?]: 5348 [0], given: 165

Re: If n is positive, which of the following is equal to [#permalink] New post 24 Nov 2013, 20:05
Expert's post
jlgdr wrote:
kook44 wrote:
If n is positive, which of the following is equal to \frac{1}{\sqrt{n+1}-\sqrt{n}}

A. 1

B. \sqrt{2n+1}

C. \frac{\sqrt{n+1}}{\sqrt{n}}

D. \sqrt{n+1}-\sqrt{n}

E. \sqrt{n+1}+\sqrt{n}


Isn't it much easier to just pick n=1 and then look for target in answer choices?

Cheers!
J :)


Yes, absolutely it is. I would answer this question by plugging in the values but you have to be careful of two things. When pluggin in values in the options, two or more options might seem to satisfy. If this happens, you need to plug in a different number in those two to get the actual correct answer.
Also, you need to ensure that the value given by option actually does not match the required value before discarding it.
e.g. here if I put n = 1, \frac{1}{\sqrt{n+1}-\sqrt{n}} = \frac{1}{\sqrt{2}-1}

while option (E) gives \sqrt{n+1}+\sqrt{n} = \sqrt{2}+1

You cannot discard option (E) because it doesn't look the same. You must rationalize the value obtained from the expression and then compare it with what you get from option (E). So you must be careful.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Re: If n is positive, which of the following is equal to   [#permalink] 24 Nov 2013, 20:05
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic If n is positive, which of the following is equal to caiyun 5 05 Nov 2008, 20:26
If n is positive, which of the following is equal to 1 / { sset009 2 26 Jul 2008, 09:25
If n is positive, which of the following is equal to mistahfold 4 26 Oct 2007, 05:08
If n is positive, which of the following is equal to nfa1rhp 1 29 Jul 2007, 10:15
If n is positive, which of the following is equal to cejismundo 4 31 Aug 2006, 14:11
Display posts from previous: Sort by

If n is positive, which of the following is equal to

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.