If n is the product of the integers from1 to 20 inclusive, : Quant Question Archive [LOCKED]
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 18 Jan 2017, 16:00

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If n is the product of the integers from1 to 20 inclusive,

Author Message
Manager
Joined: 10 Oct 2008
Posts: 56
Followers: 1

Kudos [?]: 46 [0], given: 0

If n is the product of the integers from1 to 20 inclusive, [#permalink]

### Show Tags

17 Oct 2008, 07:09
This topic is locked. If you want to discuss this question please re-post it in the respective forum.

If n is the product of the integers from1 to 20 inclusive, what is the greatest integer k for which 2k is a factor of n?

A. 10
B. 12
C. 15
D. 18
E. 20
Director
Joined: 01 Jan 2008
Posts: 629
Followers: 4

Kudos [?]: 175 [0], given: 1

### Show Tags

17 Oct 2008, 07:47
Jcpenny wrote:
If n is the product of the integers from1 to 20 inclusive, what is the greatest integer k for which 2k is a factor of n?

A. 10
B. 12
C. 15
D. 18
E. 20

Make sure you write the question correctly next time. It's not 2k but 2^k.

int(20/2)+int(20/4)+int(20/8)+int(20/16)=10+5+2+1=18 -> D
Manager
Joined: 15 Apr 2008
Posts: 165
Followers: 2

Kudos [?]: 12 [0], given: 1

### Show Tags

17 Oct 2008, 07:48
what is the OA
I am getting E as answer, as 2*20=40 will be a factor for 20!

or i might be missing some important point here
Manager
Joined: 15 Apr 2008
Posts: 165
Followers: 2

Kudos [?]: 12 [0], given: 1

### Show Tags

17 Oct 2008, 07:56
yes, now it makes sense
so it actually is 2^k

Re: product   [#permalink] 17 Oct 2008, 07:56
Display posts from previous: Sort by