Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If |p−6|+p=6, which of the following must be true? [#permalink]
30 Jun 2013, 17:08

If |p−6|+p=6, which of the following must be true?

There are two ways to solve, one of which is to just pick numbers.

The other way: |p-6|+p=6 |p-6| = 6-p |p-6| = -(p-6) |x| = -x (i.e. the value inside the absolute value bars is negative) So, (p-6) is negative when p≤6

Re: If |p−6|+p=6, which of the following must be true? [#permalink]
01 Jul 2013, 13:39

without plugging in numbers, how would you know that this |p-6| = -(p-6) would be p<=6 and not just p<6? the way i'm solving it, this |x| = -x condition would be met when (p-6)<0 and therefore -(p-6)<0 yields p<6. but why also p=6?

Re: If |p−6|+p=6, which of the following must be true? [#permalink]
01 Jul 2013, 13:42

Expert's post

nancerella wrote:

without plugging in numbers, how would you know that this |p-6| = -(p-6) would be p<=6 and not just p<6? the way i'm solving it, this |x| = -x condition would be met when (p-6)<0 and therefore -(p-6)<0 yields p<6. but why also p=6?

thanks!

Because when \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\).

We have \(|p-6|=-(p-6)\), thus \(p-6\leq{0}\) --> \(p\leq{6}\). _________________

Re: If |p−6|+p=6, which of the following must be true? [#permalink]
09 Aug 2014, 12:26

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

MBA Acceptance Rate by Country Most top American business schools brag about how internationally diverse they are. Although American business schools try to make sure they have students from...

McCombs Acceptance Rate Analysis McCombs School of Business is a top MBA program and part of University of Texas Austin. The full-time program is small; the class of 2017...

My swiss visa stamping is done and my passport was couriered through Blue dart. It took 5 days to get my passport stamped and couriered to my address. In...