Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Manhattan tells me I should make the table which works fine. I tried doing it without the table and that worked too. However, without the table I was less convinced and more confused because in your head it gets jumbled up. So is there another foolproof way of doing these? Or do I have to stick with the Manhattan table?

Re: A proper organised way to solve this type of questions? [#permalink]
07 Apr 2013, 02:46

1

This post received KUDOS

karmapatell wrote:

If p, q, and r are integers, is pq + r even?

(1) p + r is even. (2) q + r is odd.

Manhattan tells me I should make the table which works fine. I tried doing it without the table and that worked too. However, without the table I was less convinced and more confused because in your head it gets jumbled up. So is there another foolproof way of doing these? Or do I have to stick with the Manhattan table?

The Manhattan table works fine, another method is using real numbers .

(1) p + r is even. \(3+1 = even\), so is \(3q+1\) even? depends on q : not Sufficient (2) q + r is odd. \(2+1=odd\), so is \(p2+1\) even? depends on p : not Sufficient

(1)+(2) p + r is even AND q + r is odd Example 1: \(3+1=even\)--\(2+1 = odd\) \(2*3+1=odd\) Example 2:\(2+2=even\)--\(3+2=odd\) \(2*3+2=even\) Not Sufficient _________________

It is beyond a doubt that all our knowledge that begins with experience.

Re: A proper organised way to solve this type of questions? [#permalink]
08 Apr 2013, 04:13

Expert's post

karmapatell wrote:

If p, q, and r are integers, is pq + r even?

(1) p + r is even. (2) q + r is odd.

Manhattan tells me I should make the table which works fine. I tried doing it without the table and that worked too. However, without the table I was less convinced and more confused because in your head it gets jumbled up. So is there another foolproof way of doing these? Or do I have to stick with the Manhattan table?

From F.S 1, assume p=r=0, thus, we get a YES for the question stem. Now assume p=1, r=1,q = 2 we get a NO. Insufficient.

From F.S 2, assume q=0,r=1, we get a NO for the question stem.Now assume r=2,q=1 ,p=2, we get a YES. Insufficient.

Taking both together, we have p=0,r=0,q=1, and a YES. Again taking, r=1,p=1,q=0, a NO. Insufficient.

What might help you in selecting good numbers is the fact that from the F.S 1,either both p,r are even or both are odd. Similarly, from F.S 2, q and r are odd/even or even/odd.

Manhattan tells me I should make the table which works fine. I tried doing it without the table and that worked too. However, without the table I was less convinced and more confused because in your head it gets jumbled up. So is there another foolproof way of doing these? Or do I have to stick with the Manhattan table?

Odds and Evens, ok

Statement 1

Clearly Insufficient

Statement 2

Same here

Statements 1 and 2 combined

p+r = even q+r = odd

p-q = odd

Then p must be even and q odd or the other way around

If p is even then pq will be even and 'r' will be even = All even= Answer is YES if q is even then pq will again be even and 'r' will be odd= All odd = Answer is NO

Hence E is your best choice

Cheers! J

gmatclubot

Re: If p, q, and r are integers, is pq + r even?
[#permalink]
06 Jan 2014, 08:44

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

A site for the partners of MBA candidates : A website we are creating for the better halves of the MBA candidates and the candidates themselves to know “the...

A week ago we were informed of our pre program preparation for Entrepreneurship and Finance… 2.5 months to go and we are already busy with our studies… Where...