Find all School-related info fast with the new School-Specific MBA Forum

It is currently 30 Sep 2014, 02:03

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If p, x, and y are positive integers, y is odd, and p = x^2

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
8 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 22 Sep 2005
Posts: 280
Followers: 1

Kudos [?]: 50 [8] , given: 1

If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 14 Aug 2009, 11:49
8
This post received
KUDOS
12
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

40% (02:58) correct 60% (02:07) wrong based on 744 sessions
If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5.
(2) x – y = 3
[Reveal] Spoiler: OA
20 KUDOS received
Manager
Manager
avatar
Joined: 25 Jul 2009
Posts: 117
Schools: NYU, NUS, ISB, DUKE, ROSS, DARDEN
Followers: 4

Kudos [?]: 144 [20] , given: 17

Re: PS: Divisible by 4 [#permalink] New post 14 Aug 2009, 12:46
20
This post received
KUDOS
2
This post was
BOOKMARKED
netcaesar wrote:
If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5.
(2) x – y = 3


SOL:

St1:
Here we will have to use a peculiar property of number 8. The square of any odd number when divided by 8 will always yield a remainder of 1!!

This means that y^2 MOD 8 = 1 for all y
=> p MOD 8 = (x^2 + 1) MOD 8 = 5
=> x^2 MOD 8 = 4

Now if x is divisible by 4 then x^2 MOD 8 will be zero. And also x cannot be an odd number as in that case x^2 MOD 8 would become 1. Hence we conclude that x is an even number but also a non-multiple of 4.
=> SUFFICIENT


St2:
x - y = 3
Since y can be any odd number, x could also be either a multiple or a non-multiple of 4.
=> NOT SUFFICIENT

ANS: A
_________________

KUDOS me if I deserve it !! :)

My GMAT Debrief - 740 (Q50, V39) | My Test-Taking Strategies for GMAT | Sameer's SC Notes

1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 23 Jun 2009
Posts: 359
Location: Turkey
Schools: UPenn, UMich, HKS, UCB, Chicago
Followers: 5

Kudos [?]: 95 [1] , given: 60

Re: PS: Divisible by 4 [#permalink] New post 15 Aug 2009, 12:49
1
This post received
KUDOS
Very good solution ;) I did not know this property of 8. Kudos to you.

By and induction.
1^2=1 mod 8
say
n^2=1 mod 8 (n is an odd number)
than
if (n+2)^2=1 mod 8 ? (n+2 is the next odd number)
(n+2)^2=n^2+4n+4= 1 + 4n + 4 mod 8
4n+4=0 mod 8 because n is an odd number and 4n=4 mod 8.
So induction works.

So for any odd number n, n^2=1 mod 8
Director
Director
avatar
Joined: 23 Apr 2010
Posts: 583
Followers: 2

Kudos [?]: 26 [0], given: 7

Re: PS: Divisible by 4 [#permalink] New post 16 Dec 2010, 06:13
Can I ask someone to look at this question a provide a solution that doesn't depend on knowing peculiar properties of number 8 or induction?

Thank you.
Expert Post
14 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23055
Followers: 3535

Kudos [?]: 27190 [14] , given: 2725

Re: PS: Divisible by 4 [#permalink] New post 16 Dec 2010, 06:39
14
This post received
KUDOS
Expert's post
4
This post was
BOOKMARKED
nonameee wrote:
Can I ask someone to look at this question a provide a solution that doesn't depend on knowing peculiar properties of number 8 or induction?

Thank you.


If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5 --> p=8q+5=x^2+y^2 --> as given that y=odd=2k+1 --> 8q+5=x^2+(2k+1)^2 --> x^2=8q+4-4k^2-4k=4(2q+1-k^2-k).

So, x^2=4(2q+1-k^2-k). Now, if k=odd then 2q+1-k^2-k=even+odd-odd-odd=odd and if k=even then 2q+1-k^2-k=even+odd-even-even=odd, so in any case 2q+1-k^2-k=odd --> x^2=4*odd --> in order x to be multiple of 4 x^2 must be multiple of 16 but as we see it's not, so x is not multiple of 4. Sufficient.

(2) x – y = 3 --> x-odd=3 --> x=even but not sufficient to say whether it's multiple of 4.

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

3 KUDOS received
Manager
Manager
User avatar
Joined: 02 Sep 2010
Posts: 50
Location: India
Followers: 0

Kudos [?]: 49 [3] , given: 17

Re: PS: Divisible by 4 [#permalink] New post 18 Dec 2010, 10:23
3
This post received
KUDOS
maliyeci wrote:
Very good solution ;) I did not know this property of 8. Kudos to you.

By and induction.
1^2=1 mod 8
say
n^2=1 mod 8 (n is an odd number)
than
if (n+2)^2=1 mod 8 ? (n+2 is the next odd number)
(n+2)^2=n^2+4n+4= 1 + 4n + 4 mod 8
4n+4=0 mod 8 because n is an odd number and 4n=4 mod 8.
So induction works.

So for any odd number n, n^2=1 mod 8


Its not something one shall already know before attacking a question, you may realize properties like this when u start solving a question.
Even I didn't know about this property of 8.

I approached the question in following way:

Stmt 1: P/8=(x^2+y^2)/8; using remainder theorem;
rem[(x^2+y^2)/8]= rem[x^2/8] + rem[y^2/8]
if x is divisible by 4, then x^2= 4k*4k= 16K=8*2K is also divisible by 8.
now to anaylze rem[y^2/8]; start putting suitable values of y; i.e all odd values starting from 1.
for y=1; rem(1/8)=1
for y=3; rem(9/8)=1
for y=5;rem(25/8)=1

so you observe this pattern here. :-D
coming back to ques now, as rem[(x^2+y^2)/8]= rem[x^2/8] + rem[y^2/8]=
rem[x^2/8] + 1 =5; this means rem[x^2/8] is not 0; which implies x is not divisible my 8;
Sufficient

Stmt2:
y being odd can be accept both 3 and 5 as values and we get different results; thus
Insufficient

Thus OA is A
_________________

The world ain't all sunshine and rainbows. It's a very mean and nasty place and I don't care how tough you are it will beat you to your knees and keep you there permanently if you let it. You, me, or nobody is gonna hit as hard as life. But it ain't about how hard ya hit. It's about how hard you can get it and keep moving forward. How much you can take and keep moving forward. That's how winning is done!

Expert Post
11 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4810
Location: Pune, India
Followers: 1131

Kudos [?]: 5165 [11] , given: 164

Re: PS: Divisible by 4 [#permalink] New post 19 Dec 2010, 06:49
11
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
netcaesar wrote:
If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5.
(2) x – y = 3


Such questions can be easily solved keeping the concept of divisibility in mind. Divisibility is nothing but grouping. Lets say if we need to divide 10 by 2, out of 10 marbles, we make groups of 2 marbles each. We can make 5 such groups and nothing will be left over. So quotient is 5 and remainder is 0. Similarly if you divide 11 by 2, you make 5 groups of 2 marbles each and 1 marble is left over. So 5 is quotient and 1 is remainder. For more on these concepts, check out: http://gmatquant.blogspot.com/2010/11/divisibility-and-remainders-if-you.html

Coming to your question,

First thing that comes to mind is if y is odd, y^2 is also odd.
If y = 2k+1,
y^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4k(k+1) + 1

Since one of k and (k+1) will definitely be even (out of any two consecutive integers, one is always even, the other is always odd), 4k(k+1) will be divisible by 8. So when y^2 is divided by 8, it will leave a 1.


Stmnt 1: When p is divided by 8, the remainder is 5.
When y^2 is divided by 8, remainder is 1. To get a remainder of 5, when x^2 is divided by 8, we should get a remainder of 4.
x^2 = 8a + 4 (i.e. we can make 'a' groups of 8 and 4 will be leftover)
x^2 = 4(2a+1) This implies x = 2*\sqrt{Odd Number}because (2a+1) is an odd number. Square root of an odd number will also be odd.
Therefore, we can say that x is not divisible by 4. Sufficient.

Stmnt 2: x - y = 3
Since y is odd, we can say that x will be even (Even - Odd = Odd). But whether x is divisible by 2 only or by 4 as well, we cannot say since here we have no constraints on p. Not sufficient.

Answer (A).
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 25 Mar 2012
Posts: 3
Followers: 0

Kudos [?]: 1 [0], given: 1

Re: PS: Divisible by 4 [#permalink] New post 16 Jul 2012, 17:19
Am i missing something, why cant we take stmt 2 as follows:
squaring x-y=3 on both sides, we get p=9+2xy, that is p=odd + even = odd, not divisible by 4
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4810
Location: Pune, India
Followers: 1131

Kudos [?]: 5165 [0], given: 164

Re: PS: Divisible by 4 [#permalink] New post 16 Jul 2012, 22:24
Expert's post
Eshaninan wrote:
Am i missing something, why cant we take stmt 2 as follows:
squaring x-y=3 on both sides, we get p=9+2xy, that is p=odd + even = odd, not divisible by 4


The question is: "Is x divisible by 4?" not "Is p divisible by 4?"

x is even since y is odd. We don't know whether x is divisible by only 2 or 4 as well.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

1 KUDOS received
Intern
Intern
User avatar
Joined: 14 May 2013
Posts: 13
Followers: 0

Kudos [?]: 8 [1] , given: 3

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 12 Jun 2013, 09:58
1
This post received
KUDOS
netcaesar wrote:
If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5.
(2) x – y = 3


1.
As p = 8I + 5
we have values of P = 5,13,21,29..... etc ..
as y is odd
when we solve this p(odd) = x^2 + y^2(odd)
x^2 = odd -odd = even

which can be 2,4,6 ... etc
but if we check for any value of p we don't get any multiple of 4.
so it say's clearly that x is not divisible by 4.

2.
x-y = 3
x = y(odd)+3
x is even which can be 2,4,6.. so it's not sufficient ..

Ans : A
_________________

Chauahan Gaurav
Keep Smiling :)

Manager
Manager
User avatar
Joined: 29 Jun 2011
Posts: 165
WE 1: Information Technology(Retail)
Followers: 3

Kudos [?]: 13 [0], given: 29

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 03 Sep 2013, 03:00
Excellent explanation Bunuel & Karishma:):)
1 KUDOS received
Intern
Intern
avatar
Joined: 25 Jun 2013
Posts: 7
Followers: 0

Kudos [?]: 1 [1] , given: 0

GMAT ToolKit User
Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 13 Sep 2013, 19:25
1
This post received
KUDOS
from first statement p = 8j + 5
Put j as 1, 2,3,4,5... p would be 13, 21,29, 37,45...
Now in the formula p= x^2+y^2 put 1,3,5,7 as value of y ( as y is odd) to get x.
You will notic the possible value of x is 2 which is not divisble by 4.

Image Posted from GMAT ToolKit
4 KUDOS received
Intern
Intern
avatar
Joined: 30 May 2013
Posts: 2
Schools: AGSM '15
Followers: 0

Kudos [?]: 4 [4] , given: 4

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 15 Sep 2013, 21:13
4
This post received
KUDOS
I did this question this way. I found it simple.

1. p=x^2+y^2
y is odd
p div 8 gives remainder 5. A number which gives remainder 5 when divided by 8 is odd.

so (x^2 + y^2)/8 = oddnumber
(x^2 + y^2) = 8 * oddnumber (this is an even number without doubt)

x^2 + y^2 is even. Since y is odd to get x^2+y^2 even x must also be odd.

X is an odd number not divisible by 4

Option A: 1 alone is sufficient
Intern
Intern
avatar
Joined: 21 Sep 2013
Posts: 11
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 23 Dec 2013, 22:45
For Statement 1:
since p when divided by 8 leaves remainder 5.We obtain the following equation
p= 8q+5
We know y is odd. If we write p =x^2+y^2 then we get the eqn:
x^2+y^2=8q+5
Since, y is odd, 8q is even and 5 is odd. We get 8q+5 is odd.
Then x^2= odd - y^2
i.e x^2=even
ie x= even
But it's not sufficient to answer the question whether x is a multiple of 4?
By this logic i get E as my answer.
Statement 2: is insufficient.
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4810
Location: Pune, India
Followers: 1131

Kudos [?]: 5165 [0], given: 164

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 30 Dec 2013, 22:39
Expert's post
Abheek wrote:
For Statement 1:
since p when divided by 8 leaves remainder 5.We obtain the following equation
p= 8q+5
We know y is odd. If we write p =x^2+y^2 then we get the eqn:
x^2+y^2=8q+5
Since, y is odd, 8q is even and 5 is odd. We get 8q+5 is odd.
Then x^2= odd - y^2
i.e x^2=even
ie x= even
But it's not sufficient to answer the question whether x is a multiple of 4?


Your analysis till now is fine but it is incomplete. We do get that x is even but we also get that x is a multiple of 2 but not 4 as explained in the post above: if-p-x-and-y-are-positive-integers-y-is-odd-and-p-x-82399.html#p837890
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 01 Jan 2013
Posts: 68
Location: India
Followers: 0

Kudos [?]: 12 [0], given: 130

GMAT ToolKit User CAT Tests
Re: PS: Divisible by 4 [#permalink] New post 29 Apr 2014, 21:15
Bunuel wrote:
nonameee wrote:
Can I ask someone to look at this question a provide a solution that doesn't depend on knowing peculiar properties of number 8 or induction?

Thank you.


If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5 --> p=8q+5=x^2+y^2 --> as given that y=odd=2k+1 --> 8q+5=x^2+(2k+1)^2 --> x^2=8q+4-4k^2-4k=4(2q+1-k^2-k).

So, x^2=4(2q+1-k^2-k). Now, if k=odd then 2q+1-k^2-k=even+odd-odd-odd=odd and if k=even then 2q+1-k^2-k=even+odd-even-even=odd, so in any case 2q+1-k^2-k=odd --> x^2=4*odd --> in order x to be multiple of 4 x^2 must be multiple of 16 but as we see it's not, so x is not multiple of 4. Sufficient.

(2) x – y = 3 --> x-odd=3 --> x=even but not sufficient to say whether it's multiple of 4.

Answer: A.


A)
8a + 5 = x^2 + y^2
even + odd = x^2 + odd
x^2=even
therefore x can be 2 ,not divisible by 4.
or 4 ,divisble by 4
Hence Insufficient

B) x - y = 3
x - odd = odd
x= even
but x can be 2 ,not divisible by 4 ,
or 4 ,divisble by 4 .
Hence Insufficient.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23055
Followers: 3535

Kudos [?]: 27190 [0], given: 2725

Re: PS: Divisible by 4 [#permalink] New post 30 Apr 2014, 01:36
Expert's post
abid1986 wrote:
Bunuel wrote:
nonameee wrote:
Can I ask someone to look at this question a provide a solution that doesn't depend on knowing peculiar properties of number 8 or induction?

Thank you.


If p, x, and y are positive integers, y is odd, and p = x^2 + y^2, is x divisible by 4?

(1) When p is divided by 8, the remainder is 5 --> p=8q+5=x^2+y^2 --> as given that y=odd=2k+1 --> 8q+5=x^2+(2k+1)^2 --> x^2=8q+4-4k^2-4k=4(2q+1-k^2-k).

So, x^2=4(2q+1-k^2-k). Now, if k=odd then 2q+1-k^2-k=even+odd-odd-odd=odd and if k=even then 2q+1-k^2-k=even+odd-even-even=odd, so in any case 2q+1-k^2-k=odd --> x^2=4*odd --> in order x to be multiple of 4 x^2 must be multiple of 16 but as we see it's not, so x is not multiple of 4. Sufficient.

(2) x – y = 3 --> x-odd=3 --> x=even but not sufficient to say whether it's multiple of 4.

Answer: A.


A)
8a + 5 = x^2 + y^2
even + odd = x^2 + odd
x^2=even
therefore x can be 2 ,not divisible by 4.
or 4 ,divisble by 4
Hence Insufficient

B) x - y = 3
x - odd = odd
x= even
but x can be 2 ,not divisible by 4 ,
or 4 ,divisble by 4 .
Hence Insufficient.


Please note that the correct answer is A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 22 Jul 2014
Posts: 112
Followers: 0

Kudos [?]: 59 [0], given: 168

CAT Tests
Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 15 Aug 2014, 23:16
For statement 1 , wouldn't plugging in values be a better option? :?
_________________

If you found this post useful for your prep, click 'Kudos'

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4810
Location: Pune, India
Followers: 1131

Kudos [?]: 5165 [1] , given: 164

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 18 Aug 2014, 01:43
1
This post received
KUDOS
Expert's post
alphonsa wrote:
For statement 1 , wouldn't plugging in values be a better option? :?


No. When you need to establish something, plugging in values is not fool proof.

Anyway, in this question, how will you plug in values? You cannot assume a value for x since that is what you need to find. You will assume a value for y and a value for p such that they satisfy all conditions. This itself will be quite tricky. Then when you do get a value for x, you will find that it will be even but not divisible by 4. How can you be sure that this will hold for every value of y and p?

When a statement is not sufficient, plugging in values can work - you find two opposite cases - one which answers in yes and the other which answers in no. Then you know that the statement alone is not sufficient. But when the statement is sufficient, it is very hard to prove that it will hold for all possible values using number plugging alone. You need to use logic in that case.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 17 Jul 2013
Posts: 17
GRE 1: 326 Q166 V160
Followers: 0

Kudos [?]: 2 [0], given: 11

Re: If p, x, and y are positive integers, y is odd, and p = x^2 [#permalink] New post 29 Aug 2014, 04:25
Hi Karishma,

Thanks for the explanation to the question. I was just wondering how the answer would change if we change the question stem a little bit. What if the question asks if p (instead of x) is divisible by 4?

In this scenario, statement 1 would be sufficient since if something leaves a remainder of 5, it would leave a remainder of 1 upon division by 4

For statement 2, we know that x = y+3, so x is even. If we square it, it would surely be divisible by 4. Now if a number (y^2, which is odd) non-divisible by 4 is added to a number divisible by 4, the result would surely be not divisible by 4. So statement 2 would also be sufficient.

Is this reasoning correct? just for practicing the concept :)
Re: If p, x, and y are positive integers, y is odd, and p = x^2   [#permalink] 29 Aug 2014, 04:25
    Similar topics Author Replies Last post
Similar
Topics:
3 Experts publish their posts in the topic If p, q, x, y, and z are different positive integers, which Bunuel 4 13 Jan 2014, 00:56
11 Experts publish their posts in the topic For positive integers x and y, x^2 = 350y. Is y divisible jayaddula 13 09 May 2012, 15:25
19 Experts publish their posts in the topic If x and y are positive integers is y odd? devinawilliam83 11 04 Mar 2012, 22:42
If X and Y are positive integers , is y odd ? (1) shashankp27 1 02 Oct 2011, 14:02
3 If p, x, and y are positive integers, y is odd, and p = x^2 gulatin2 12 20 Aug 2009, 11:29
Display posts from previous: Sort by

If p, x, and y are positive integers, y is odd, and p = x^2

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 21 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.