If positive integer x is a multiple of 6 and positive : GMAT Data Sufficiency (DS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 19 Jan 2017, 08:01

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If positive integer x is a multiple of 6 and positive

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Director
Joined: 15 Aug 2005
Posts: 798
Location: Singapore
Followers: 2

Kudos [?]: 55 [1] , given: 0

If positive integer x is a multiple of 6 and positive [#permalink]

### Show Tags

09 Oct 2005, 00:53
1
This post received
KUDOS
11
This post was
BOOKMARKED
00:00

Difficulty:

45% (medium)

Question Stats:

61% (02:20) correct 39% (01:36) wrong based on 548 sessions

### HideShow timer Statistics

If positive integer x is a multiple of 6 and positive integer y is a multiple of 14, is xy a multiple of 105?

(1) x is a multiple of 9.
(2) y is a multiple of 25.
[Reveal] Spoiler: OA

_________________

Cheers, Rahul.

SVP
Joined: 24 Sep 2005
Posts: 1890
Followers: 19

Kudos [?]: 292 [0], given: 0

Re: DS - Multiple [#permalink]

### Show Tags

09 Oct 2005, 05:07
rahulraao wrote:
If positive integer x is a multiple of 6 and positive integer y is a multiple of 14, is xy a multiple of 105?

(1) x is a multiple of 9.
(2) y is a multiple of 25.

xy is a multiple or 105---->at least x or y must be a multiple of 5
(1) is insufficient.
(2) is sufficient.
GMAT Club Legend
Joined: 07 Jul 2004
Posts: 5062
Location: Singapore
Followers: 30

Kudos [?]: 357 [1] , given: 0

### Show Tags

09 Oct 2005, 05:17
1
This post received
KUDOS
1
This post was
BOOKMARKED
105 has prime factors: 21 * 5 = 3 * 7 * 5

Using (1), x is also a multiple of 9. Then smallest possible value of X is 18. We can't tell whether xy is a multiple of 105 as we cannot determine if there is a prime factor 5 present in Y.

Using (2), y is a multple of 25. So we have prime factors 7, 5, 2, and 3. So xy is a multiple of 105.

Ans: B
VP
Joined: 07 Apr 2009
Posts: 1183
Concentration: General Management, Strategy
Schools: Duke (Fuqua) - Class of 2012
Followers: 35

Kudos [?]: 437 [2] , given: 19

Re: multiples [#permalink]

### Show Tags

26 Apr 2009, 14:01
2
This post received
KUDOS
B
factors of 105 are 3, 5, 7
14 gets you the 7
6 gets you the 3
so all you need is something to get you the 5

A) doesn't solve anything, you can never get a 5 in the unit place with just 14, 6, and 9
B) gives you the 5 you need
Manager
Joined: 11 Sep 2009
Posts: 129
Followers: 5

Kudos [?]: 340 [0], given: 6

Re: multiple of 14 [#permalink]

### Show Tags

11 Nov 2009, 23:09
This quesiton can be solved if reduced to prime factors.

Given Information:

Let n represent some integer...

a) x = 6n = (3)(2)n
b) y = 14n = (7)(2)n

We know that therefore: xy = (3)(7)(2)(2)n
Is xy = 105n? = (5)(3)(7)n?

So essentially we need to know that either x or y is ALSO a multiple of 5

Statement 1: x is a multiple of 9.

i.e. x = (3)(3)n. This gives no information whether x is a multiple of 5. Therefore, insufficient.

Statement 2: y is a multiple of 25.

i.e. y = (5)(5)n. Bingo! Sufficient.

Therefore the correct answer is B.
Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1310
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 79

Kudos [?]: 1003 [1] , given: 157

Re: multiple of 14 [#permalink]

### Show Tags

11 Nov 2009, 23:20
1
This post received
KUDOS
x is a multiple of 6==> x has at least two factors, 2 & 3
y is a multiple of14==> y has at least two factors, 2 & 7

xy will be a multiple of 105, if the factors of xy (combined factors of x & y) can be formed together to make 105.

Statement 1: x is a multiple of 9==> In addtion to 2 & 3 , x also has one more factor 3. So x has at least three factors 2,3 & 3. Now if we multiply x & y and hence multiply the possible factors of x & y we will have the following possible factors of xy: 2,3,3,2 & 7. Now we can't form 105 by multiplying any of these numbers. Hence we can say that statement 1 is not sufficient.

Statement 2: y is a multiple of 25>> In addition to 2 & 7, y also has two more factors, 5 & 5 or 5^2. Now if we multiply x & y and hence multiply the possible factors of x & y we will have the following possible group 2,3,7,5 & 5. You can see that we can easily form 105 by multiplying 3 , 7 & 5. Statement 2 is sufficient

Hence answer is "B".

This is my way of thinking. Kindly correct me if I am wrong.
_________________
Manager
Joined: 19 Nov 2007
Posts: 225
Followers: 1

Kudos [?]: 255 [0], given: 1

Re: multiple of 14 [#permalink]

### Show Tags

11 Nov 2009, 23:38
Although the answer is correct. The method could be wrong

AKProdigy87 wrote:
a) x = 6n = (3)(2)n
b) y = 14n = (7)(2)n

If x= 6n, you cannot assume that y= 14n; y could also be 14m

AKProdigy87 wrote:
We know that therefore: xy = (3)(7)(2)(2)n

xy need not be a equal to (3)(7)(2)(2)n; xy is a multiple of (3)(7)(2) =42

Last edited by jade3 on 12 Nov 2009, 01:28, edited 1 time in total.
Manager
Joined: 11 Sep 2009
Posts: 129
Followers: 5

Kudos [?]: 340 [0], given: 6

Re: multiple of 14 [#permalink]

### Show Tags

12 Nov 2009, 00:24
jade3 wrote:
Although the answer is correct. The method is wrong

AKProdigy87 wrote:
a) x = 6n = (3)(2)n
b) y = 14n = (7)(2)n

If x= 6n, you cannot assume that y= 14n; y could also be 14m

AKProdigy87 wrote:
We know that therefore: xy = (3)(7)(2)(2)n

xy need not be a equal to (3)(7)(2)(2)n; xy is a multiple of (3)(7)(2) =42

I used n to represent an integer (any integer)... not as a means of equating that the integer n was the same in both cases. I can see how the confusion could arise though.
Manager
Joined: 13 Aug 2009
Posts: 203
Schools: Sloan '14 (S)
Followers: 3

Kudos [?]: 103 [0], given: 16

Re: multiple of 14 [#permalink]

### Show Tags

12 Nov 2009, 22:59
First we need to figure out what the factors of 105 are:

Factors of 105: 1, 3, 5, 7

So we need figure out if x and y share the factors [1,3,5,7]:

Factors of x (6): 1,2,3,6
Factors of y (14): 1,2,7

Between factors of 6 and 14, we are missing only the factor 5.

Statement 1:
Factors of x (9): 1,3,3
NOT SUFFICIENT

Statement 2:
Factors of y (25): 1,5,5
SUFFICIENT

ANSWER: B.
Manager
Joined: 17 Aug 2009
Posts: 235
Followers: 5

Kudos [?]: 234 [0], given: 25

Re: multiple of 14 [#permalink]

### Show Tags

10 Dec 2009, 12:01
REMEMBER THAT ANY NUMBER WILL BE A MULTIPLE OF ANOTHER NUMBER IF IT SHARES THE SAME PRIME FACTORS

IF x is a multiple of 6 then it will have 2 and 3 as prime factors
If y is a multiple of 14 then it will have 2 and 7 as multiples

XY has prime factors 2,3 and 7
The number 105 has prime factors, 3, 5 and 7

As 5 is the only missing prime factor between X and Y, So we need a 5 somewhere between X or Y to make it a multiple of 105

Statement 1 -----INSUFFICIENT

X is a multiple of 9 and therefore has an additional 3 as prime factor. Not needed for our answer

Statement 2-----SUFFICIENT

Y is a multiple of 25 therefore Y has a 5*5 in it
Bingo! We needed a 5. Hence Sufficient

Ans - B
Manager
Joined: 29 Oct 2009
Posts: 201
Concentration: General Management, Sustainability
WE: Consulting (Computer Software)
Followers: 2

Kudos [?]: 92 [0], given: 12

Re: Multiples question [#permalink]

### Show Tags

23 Feb 2010, 07:18
X is a multiple of 6 => X=6a
Y is a multiple of 14 => Y=14b

Now XY = 6*14*a*b = 3*2*2*7*a*b

The question asks if XY is multiple of 105.
105 = 5*21 = 5*3*7

When you see XY, we have 3 and 7 already present in the multiple. The only other thing required is 5.

So either X or Y should be multiple of 5.

Second option shows Y is multiple of 25 which in turn is multiple of 5. So this is sufficient for the solution.

Hope it helps.
Manager
Joined: 26 May 2005
Posts: 208
Followers: 2

Kudos [?]: 116 [0], given: 1

Re: Multiples question [#permalink]

### Show Tags

23 Feb 2010, 07:56
If positive integer x is a multiple of 6, and positive integer y is a multiple of 14, is xy a multiple of 105?
x = 2 * 3 * a
y = 2 * 7 * b
xy = 3 * 5 * 7 * c????
where a,b,c etc are integers
(1) x is a multiple of 9
x = 3*3 * d .. so from the above equations x can be written as x=2*3*3 * e
the product of xy can be written as xy = 2*3*3*7 * f
if f is a multiple of 5 then xy will be multiple of 105 else no
Insufficient
(2) y is a multiple of 25
y = 5*5*g ... so from the above equations y can be written as y=2*7*5*5 *h
the product of xy can be written as xy = 2*3*5*5*7 * i = 3*5*7 * 2*5*i = 105 * 2*5*i
xy is a multiple of 105
Sufficient

B
Manager
Joined: 10 Feb 2010
Posts: 193
Followers: 2

Kudos [?]: 106 [0], given: 6

Re: Multiples question [#permalink]

### Show Tags

24 Feb 2010, 09:12
nickk wrote:
It seems I'm quite weak with multiples and factors, even after reading the explanation I still don't get it

If positive integer x is a multiple of 6, and positive integer y is a multiple of 14, is xy a multiple of 105?
(1) x is a multiple of 9
(2) y is a multiple of 25

OA:
[Reveal] Spoiler:
B

Let x be 6K and y be 14L

x=2x3xK
y=2x7xL

105=3x5x7

xy=(2^2)(3)(7)(K)(L)

xy has 3,7 but is missing 5. Any opttion that provides this value will be the answer.

So, option B
Senior Manager
Joined: 13 Dec 2009
Posts: 263
Followers: 10

Kudos [?]: 184 [0], given: 13

Re: Multiples question [#permalink]

### Show Tags

12 Mar 2010, 01:15
nickk wrote:
It seems I'm quite weak with multiples and factors, even after reading the explanation I still don't get it

If positive integer x is a multiple of 6, and positive integer y is a multiple of 14, is xy a multiple of 105?
(1) x is a multiple of 9
(2) y is a multiple of 25

OA:
[Reveal] Spoiler:
B

if x is multiple of 6 and y is multiple of 14 xy is definitely multiple of 2*3*7 (as this is the LCM of 6 and 14)
now 105 comprises 5*3*7
so xy has to have 5*3*7 as its factor in order to be the multiple of 105
stmt1 says x is a multiple of 9 dat means xy is multiple of 2*3*3*7 for sure but this does not prove if it is multiple of 105 or not
stmt2 says y is a multiple of 25 so xy will definitely be multiple of 2*3*7*5*5 and this LCM contains 105 in it which proves that xy is a multiple of 105.

Hence, B is the answer
_________________

My debrief: done-and-dusted-730-q49-v40

Manager
Joined: 05 Mar 2010
Posts: 221
Followers: 1

Kudos [?]: 31 [0], given: 8

Re: Multiples question [#permalink]

### Show Tags

22 Mar 2010, 02:55
Friends i dont quite understand the point here

if X is a multiple of 6 and 9 both as per statment 1, then X should be 18, 36, 72 and so on....... in any case xy is not a multiple of 105. Hence, sufficient

Am i doing anything wrong here?
_________________

Success is my Destiny

Senior Manager
Joined: 13 Dec 2009
Posts: 263
Followers: 10

Kudos [?]: 184 [0], given: 13

Re: Multiples question [#permalink]

### Show Tags

22 Mar 2010, 03:04
hardnstrong wrote:
Friends i dont quite understand the point here

if X is a multiple of 6 and 9 both as per statment 1, then X should be 18, 36, 72 and so on....... in any case xy is not a multiple of 105. Hence, sufficient

Am i doing anything wrong here?

X is a multiple of 6 and y is a multiple of 14.
but X or y can be multiple of other numbers also like 4,5,11 etc.
xy is definitely a multiple of 2*3*7 = 42 (Taking the LCM)
but if we need to find if xy is a multiple of 18 we have to be sure that xy contains 5*3*7 at least.
Since xy does contain 3,7, so it can be multiple of 105 only if it also has 5 as a multiple too.
Only second statement states that y is also a multiple of 25. which means
XY will be multiple of LCM(6, 14, 25) = 2*3*7*5*5 = 1050
since XY is multiple of 1050 its definitely a multiple of 105.
_________________

My debrief: done-and-dusted-730-q49-v40

Intern
Joined: 17 Dec 2009
Posts: 28
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: OG DS 82 [#permalink]

### Show Tags

01 Apr 2010, 14:21
XY can be expressed as (3)(5)(7)r, as the prime breakdown, for the number to be a multiple of 105

From the stem x will already have the numbers (2)(3) to be a multiple of 6
From the stem y will already have the number (7)(2) to be a multiple of 14

So, all we really need is for one of them to have the number 5

A) Prime breakdown is (3)(3) - that doesn't help since we already have a 3 in 6

B) Prime breakdown is (5)(5) - that's the number we need

So B

Hope this helps.
Manager
Joined: 24 Mar 2010
Posts: 104
Followers: 1

Kudos [?]: 30 [0], given: 12

Re: OG DS 82 [#permalink]

### Show Tags

03 Apr 2010, 14:54
Or get the LCM of 6, 14 and the numbers in the options and it should be divisible by 105, in this case its 1050, so its B
_________________

Please do consider giving kudos if you like my posts

Math Expert
Joined: 02 Sep 2009
Posts: 36566
Followers: 7078

Kudos [?]: 93177 [2] , given: 10553

Re: DS QUESTION [#permalink]

### Show Tags

06 Aug 2010, 08:21
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
zest4mba wrote:
If positive integer x is a multiple of 6 and positive integer y is a multiple of 14, is xy a multiple of 105 ?
(1) x is a multiple of 9.
(2) y is a multiple of 25.

Can someone explain this

$$105=3*5*7$$. Since $$x$$ is a multiple of 6 and $$y$$ is a multiple of 14, then $$xy$$ is a multiple of $$LCM(x,y)=2*3*7$$: we have 3 and 7 as factors of $$xy$$, so in order $$xy$$ to be a multiple of 105 we need missing 5 to be a factor of either $$x$$ or $$y$$.

(1) x is a multiple of 9 --> we don't know whether 5 is a factor of either $$x$$ or $$y$$. Not sufficient.

(2) y is a multiple of 25 --> 5 is a factor of $$y$$, hence $$xy$$ is a multiple of 105. Sufficient.

Answer: B.
_________________
Senior Manager
Joined: 14 Jun 2010
Posts: 333
Followers: 2

Kudos [?]: 24 [0], given: 7

Re: DS QUESTION [#permalink]

### Show Tags

07 Aug 2010, 02:56
Great explanation!
Re: DS QUESTION   [#permalink] 07 Aug 2010, 02:56

Go to page    1   2    Next  [ 34 posts ]

Similar topics Replies Last post
Similar
Topics:
If x is a positive integer, is x a multiple of 60? 1 06 Dec 2016, 06:05
1 If p is a positive integer, Is integer m a multiple of 6? 4 05 Dec 2016, 23:46
1 If x is a positive integer, is x a multiple of 12? 3 22 Apr 2016, 03:36
16 Is 6 the factor of positive integer x ? 4 22 Mar 2016, 08:15
6 If x and y are positive integers and x is a multiple of y, 13 26 Feb 2011, 16:44
Display posts from previous: Sort by

# If positive integer x is a multiple of 6 and positive

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.