Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
If r is not equal to 0, is r^2/|r| < 1? (1) r > -1 (2) [#permalink]
27 Jun 2010, 11:43
2
This post received KUDOS
00:00
A
B
C
D
E
Difficulty:
25% (medium)
Question Stats:
68% (01:58) correct
32% (01:35) wrong based on 344 sessions
If r is not equal to 0, is r^2/|r| < 1?
(1) r > -1
(2) r < 1
AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.
AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.
Is \(\frac{r^2}{|r|}<1\)? --> reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?
Two statements together give us the sufficient info.
Answer: C.
You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).
The first thing to note is that the question isn't testing sign. They tell us that r is not 0, and by definition, both r^2 and |r| are positive. So neither of these statements would be more useful than the other alone.
Since pos/pos = pos, we are ok doing a little creative manipulation of r^2/|r| = |(r*r)/r| = |r|. This move (putting the absolute value sign around the whole thing) isn't a rule to memorize or anything. I'm just ignoring sign temporarily, cancelling, then just assuring the positive result I need with the bars.
This question is really asking "Is r a fraction, or is it larger than 1 (in absolute value)?" _________________
Emily Sledge | Manhattan GMAT Instructor | St. Louis
AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.
Is \(\frac{r^2}{|r|}<1\)? --> reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?
Two statements together give us the sufficient info.
Answer: C.
You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).
Hope it's clear.
I guess i did make a mistake in the calc....my bad!!! thanks for the info bunuel!!! _________________
AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.
Is \(\frac{r^2}{|r|}<1\)? -->reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?
Two statements together give us the sufficient info.
Answer: C.
You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).
Hope it's clear.
How r^2/lrl reduce to lrl only ??? _________________
Bole So Nehal.. Sat Siri Akal.. Waheguru ji help me to get 700+ score !
AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.
Is \(\frac{r^2}{|r|}<1\)? -->reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?
Two statements together give us the sufficient info.
Answer: C.
You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).
Re: If r is not equal to 0, is r^2/|r| < 1? (1) r > -1 (2) [#permalink]
06 Nov 2014, 00:36
kylexy wrote:
If r is not equal to 0, is r^2/|r| < 1?
(1) r > -1
(2) r < 1
AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.
r^2/|r|<1 ---> r^2<|r|
Logically, the only way when any number squared is less than the same number not squared is when the number is between -1 and 1
S1. r>-1 only one part of interval, so INSUFFICIENT
S2. r<1 again, only one part of interval, INSUFFICIENT
S1+S2 gives full interval, SUFFICIENT
C
gmatclubot
Re: If r is not equal to 0, is r^2/|r| < 1? (1) r > -1 (2)
[#permalink]
06 Nov 2014, 00:36
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...