Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: If r, s, and t are all positive integers, what is the [#permalink]
02 Aug 2012, 15:19
3
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
If r, s, and t are all positive integers, what is the remainder when 2^(rst) is divided by 10?
First of all, when a positive integer is divided by 10, the remainder is the units digit of that integer. For example, 30 divided by 10 yields the remainder of 0, 31 divided by 10 yields the remainder of 1, 32 divided by 10 yields the remainder of 2, ...
Next, the units digit of 2 in positive integer power repeats in blocks of 4: {2, 4, 8, 6}
The units digit of 2^1 is 2; The units digit of 2^2 is 4; The units digit of 2^3 is 8; The units digit of 2^4 is 6; The units digit of 2^5 is 2, AGAIN; ...
(1) s is even --> rst is even, hence the units digit of 2^(rst) is either 4 or 6. Not sufficient.
(2) rs = 4 --> rst is a multiple of 4, hence the units digit of 2^(rst) is the same as the units digit of 2^4 so 6, which means that the remainder upon division of 2^(rst) by 10 is 6. Sufficient.
Re: If r, s, and t are all positive integers, what is the [#permalink]
11 Aug 2013, 04:39
r,s,t are +ve
REM(2^rst/10) ?
(1).
s is even also even * even = even and even*odd=even
But REM(2^2/10) and REM(2^4/10) are different hence insufficient .
(2).
rs=4
REM(2^4t/10)
REM(2^4/10) ....REM(2^8/10).......REM(2^12/10) .... All are same
Hence sufficient
(B). it is ! _________________
Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________
Re: If r, s, and t are all positive integers, what is the remain [#permalink]
19 Aug 2013, 05:42
a) if s is even, i.e. rst = even -> 2^even/10 -> can't determine b) rs = 4, i.e. rst = 4t -> 2^4t/10 -> 2^4t will always have 6 in unit's place(always the multiplication for unit place will be 6*6), so remainder will be 6 -> determined.
Re: If r, s, and t are all positive integers, what is the [#permalink]
09 Mar 2014, 15:40
Any integer that does not end in 0 will have a positive remainder when divided by 10. Specifically, the remainder will be equal to the ones column. No power of 2 ends in 0. We need the units digit of 2^(rst).
Re: If r, s, and t are all positive integers, what is the [#permalink]
12 Jun 2014, 19:11
If r, s, and t are all positive integers, what is the remainder of 2^p/10, if p = rst?
(1) s is even
(2) p = 4t
Hi everyone, i have a doubt with statement B. since p=4t so when divided by 10 we can cancel a 2 from both numerator and denominator so we have 2^3t/5 which is 8^t/5 so in this case we have different remainders each time.
Re: If r, s, and t are all positive integers, what is the [#permalink]
13 Jun 2014, 00:37
Expert's post
snehamd1309 wrote:
If r, s, and t are all positive integers, what is the remainder of 2^p/10, if p = rst?
(1) s is even
(2) p = 4t
Hi everyone, i have a doubt with statement B. since p=4t so when divided by 10 we can cancel a 2 from both numerator and denominator so we have 2^3t/5 which is 8^t/5 so in this case we have different remainders each time.
Please advice.
\(\frac{2^{4t}}{10}=\frac{2^{4t-1}}{5}\) not 2^3t/5. Also, when we are asked to find the remainder of a/b it's not correct to reduce the fraction and find the remainder of the resulting fraction. For example, the remainder when 15 is divided by 6 is 3, but if you reduce that by 3 and find the remainder of 5 by 2 you'd get the remainder of 1.
Re: If r, s, and t are all positive integers, what is the [#permalink]
13 Jun 2014, 02:19
Bunuel wrote:
snehamd1309 wrote:
If r, s, and t are all positive integers, what is the remainder of 2^p/10, if p = rst?
(1) s is even
(2) p = 4t
Hi everyone, i have a doubt with statement B. since p=4t so when divided by 10 we can cancel a 2 from both numerator and denominator so we have 2^3t/5 which is 8^t/5 so in this case we have different remainders each time.
Please advice.
\(\frac{2^{4t}}{10}=\frac{2^{4t-1}}{5}\) not 2^3t/5. Also, when we are asked to find the remainder of a/b it's not correct to reduce the fraction and find the remainder of the resulting fraction. For example, the remainder when 15 is divided by 6 is 3, but if you reduce that by 3 and find the remainder of 5 by 2 you'd get the remainder of 1.
Hope its clear.
Thanks Bunuel for your reply. I understood that one should not cancel out however cant understand 2^4t/10 is simplified into 2^4t-1/5 and not 2^3t/5. Don't we cancel the powers. for Example 2^3/2= 2^2. then why cant it be in the previous one.Please help.Thanks
Re: If r, s, and t are all positive integers, what is the [#permalink]
13 Jun 2014, 02:27
Expert's post
snehamd1309 wrote:
Bunuel wrote:
snehamd1309 wrote:
If r, s, and t are all positive integers, what is the remainder of 2^p/10, if p = rst?
(1) s is even
(2) p = 4t
Hi everyone, i have a doubt with statement B. since p=4t so when divided by 10 we can cancel a 2 from both numerator and denominator so we have 2^3t/5 which is 8^t/5 so in this case we have different remainders each time.
Please advice.
\(\frac{2^{4t}}{10}=\frac{2^{4t-1}}{5}\) not 2^3t/5. Also, when we are asked to find the remainder of a/b it's not correct to reduce the fraction and find the remainder of the resulting fraction. For example, the remainder when 15 is divided by 6 is 3, but if you reduce that by 3 and find the remainder of 5 by 2 you'd get the remainder of 1.
Hope its clear.
Thanks Bunuel for your reply. I understood that one should not cancel out however cant understand 2^4t/10 is simplified into 2^4t-1/5 and not 2^3t/5. Don't we cancel the powers. for Example 2^3/2= 2^2. then why cant it be in the previous one.Please help.Thanks
\(\frac{a^n}{a^m}=a^{n-m}\). Hence, \(\frac{2^3}{2^2}=2^{3-2}=2\) the same way: \(\frac{2^{4t}}{2}=2^{4t-1}\).
Re: If r, s, and t are all positive integers, what is the [#permalink]
02 Jul 2015, 19:23
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...