Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

OA is "A". That's only A is sufficient. but I presume that that answer should be "C" because for me r=s , if I substitute in the equation then

1/r + 1/r = 2/r = 4 r = 1/2 and I am able to prove the condition. Although, OG has taken values of r and s to prove that 2nd condition is not sufficient, then why not try to put some values for r and s in the 1st option too? Please help

OA is "A". That's only A is sufficient. but I presume that that answer should be "C" because for me r=s , if I substitute in the equation then

1/r + 1/r = 2/r = 4 r = 1/2 and I am able to prove the condition. Although, OG has taken values of r and s to prove that 2nd condition is not sufficient, then why not try to put some values for r and s in the 1st option too? Please help

Question: is \(\frac{1}{r}+\frac{1}{s}=4\) --> is \(\frac{r+s}{rs}=4\) --> is \(r+s=4rs\)?

(1) \(r+s=4rs\), directly answers the question. Sufficient. (2) \(r = s\), the question becomes: is \(\frac{1}{r}+\frac{1}{r}=4\) ? --> is \(r=\frac{1}{2}\)? but we dont' know whether \(r=\frac{1}{2}\). Not sufficient.

Hi if i go the algebric way on statement 1 i get it right but statement 2 i get it wrong so I am kinda confused eg statement 2 sates r = s

so lets see 1/r + 1/s = 4 can be written as r + s = 4 rs so replacing r we get 2s = 4s^2 s = 1/2 so statement 2 is also sufficient hence ans is D but this is not correct
_________________

OA is "A". That's only A is sufficient. but I presume that that answer should be "C" because for me r=s , if I substitute in the equation then

1/r + 1/r = 2/r = 4 r = 1/2 and I am able to prove the condition. Although, OG has taken values of r and s to prove that 2nd condition is not sufficient, then why not try to put some values for r and s in the 1st option too? Please help

Question: is \(\frac{1}{r}+\frac{1}{s}=4\) --> is \(\frac{r+s}{rs}=4\) --> is \(r+s=4rs\)?

(1) \(r+s=4rs\), directly answers the question. Sufficient. (2) \(r = s\), the question becomes: is \(\frac{1}{r}+\frac{1}{r}=4\) ? --> is \(r=\frac{1}{2}\)? but we dont' know whether \(r=\frac{1}{2}\). Not sufficient.

Answer: A.

Hi Bunuel, Could you kindly explain statement 2 clearly. From the choice, we come to the conclusion that r=s=1/2. Cant this be sufficient to answer the question? In that case, it should be (D) right.????

OA is "A". That's only A is sufficient. but I presume that that answer should be "C" because for me r=s , if I substitute in the equation then

1/r + 1/r = 2/r = 4 r = 1/2 and I am able to prove the condition. Although, OG has taken values of r and s to prove that 2nd condition is not sufficient, then why not try to put some values for r and s in the 1st option too? Please help

Question: is \(\frac{1}{r}+\frac{1}{s}=4\) --> is \(\frac{r+s}{rs}=4\) --> is \(r+s=4rs\)?

(1) \(r+s=4rs\), directly answers the question. Sufficient. (2) \(r = s\), the question becomes: is \(\frac{1}{r}+\frac{1}{r}=4\) ? --> is \(r=\frac{1}{2}\)? but we dont' know whether \(r=\frac{1}{2}\). Not sufficient.

Answer: A.

Hi Bunuel, Could you kindly explain statement 2 clearly. From the choice, we come to the conclusion that r=s=1/2. Cant this be sufficient to answer the question? In that case, it should be (D) right.????

The question asks: is \(\frac{1}{r}+\frac{1}{s}=4\) ?

(2) says \(r = s\). So, our questions becomes: is \(\frac{1}{r}+\frac{1}{r}=4\)? --> is \(r=\frac{1}{2}\)? Notice it's not given, in contrast we are asked to answer this.

Now, if \(r=\frac{1}{2}\), then the answer is YES but if \(r\neq\frac{1}{2}\), then the answer is NO. Do we know what r is actully equal to? No. So, this statement is NOT sufficient.

Hi Bunuel, Could you kindly explain statement 2 clearly. From the choice, we come to the conclusion that r=s=1/2. Cant this be sufficient to answer the question? In that case, it should be (D) right.????[/quote]

The question asks: is \(\frac{1}{r}+\frac{1}{s}=4\) ?

(2) says \(r = s\). So, our questions becomes: is \(\frac{1}{r}+\frac{1}{r}=4\)? --> is \(r=\frac{1}{2}\)? Notice it's not given, in contrast we are asked to answer this.

Now, if \(r=\frac{1}{2}\), then the answer is YES but if \(r\neq\frac{1}{2}\), then the answer is NO. Do we know what r is actully equal to? No. So, this statement is NOT sufficient.

Hope it's clear.[/quote]

Can you explain that please ? if we applied the second answer's approach on statement one :

if r= 1/2 and s=1/2 …….. > then r+s=4rs = 1/2 + 1/2 = 4*1/2*1/2 …. but if r=2 and s=2 the …> 2+2 not equal to 4*2*2

Can you explain that please ? if we applied the second answer's approach on statement one :

if r= 1/2 and s=1/2 …….. > then r+s=4rs = 1/2 + 1/2 = 4*1/2*1/2 …. but if r=2 and s=2 the …> 2+2 not equal to 4*2*2

this question is confusing !!!!!

Your question is not clear.

(1) says that r + s = 4rs. Why are you plugging number for which r + s does not equal to 4rs ? Also, the question asks whether r + s = 4rs and (1) directly answers this. Why even plug?
_________________

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...