Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

19 Feb 2012, 10:50

3

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

morya003 wrote:

If S is the infinite sequence: S1=9, S2=99, S3=999, ..., SK = 10^K-1, ..., is every term in S divisible by the prime number p?

(1) p is greater than 2.

(2) At least one term in sequence S is divisible by p.

I think with statement 2 - if P is 3 then all the terms in the sequence are divisible by P So my answer is B

Please advise.

No, B is not correct. It's straight E: if p=3 then every term in S is divisible by p but if p=11 then some terms in S are divisible by p (for example 99 and 9999) and some are not (for example 9 and 999). Not sufficient.

Re: If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

22 Jan 2013, 08:24

Expert's post

fozzzy wrote:

If you were to test examples to satisfy the equations what would they be examples for each statement.

Since the answer is E, then the examples given in my post to show that the two statements taken together are not sufficient to answer the question, would also serve to discard each statement. _________________

Re: If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

22 Dec 2013, 07:01

Bunuel wrote:

morya003 wrote:

If S is the infinite sequence: S1=9, S2=99, S3=999, ..., SK = 10^K-1, ..., is every term in S divisible by the prime number p?

(1) p is greater than 2.

(2) At least one term in sequence S is divisible by p.

No, B is not correct. It's straight E: if p=3 then every term in S is divisible by p but if p=11 then some terms in S are divisible by p (for example 99 and 9999) and some are not (for example 9 and 999). Not sufficient.

Answer: E.

hope it's clear.

Hello Bunuel

I have a doubt here. Since we know after combining the 2 statements that the Prime number will NOT be 3 but any other Prime number that divides at least 1 number in the sequence. So now we know for SURE that EVERY TERM IS NOT Divisible by a particular Prime number( Which the Questions asks). 11 will also not divide all terms but few only.

SO should the Answer not be "C" ? Please correct me.

Re: If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

22 Dec 2013, 07:05

Expert's post

niyantg wrote:

Bunuel wrote:

morya003 wrote:

If S is the infinite sequence: S1=9, S2=99, S3=999, ..., SK = 10^K-1, ..., is every term in S divisible by the prime number p?

(1) p is greater than 2.

(2) At least one term in sequence S is divisible by p.

No, B is not correct. It's straight E: if p=3 then every term in S is divisible by p but if p=11 then some terms in S are divisible by p (for example 99 and 9999) and some are not (for example 9 and 999). Not sufficient.

Answer: E.

hope it's clear.

Hello Bunuel

I have a doubt here. Since we know after combining the 2 statements that the Prime number will NOT be 3 but any other Prime number that divides at least 1 number in the sequence. So now we know for SURE that EVERY TERM IS NOT Divisible by a particular Prime number( Which the Questions asks). 11 will also not divide all terms but few only.

SO should the Answer not be "C" ? Please correct me.

Re: If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

23 Dec 2013, 06:03

niyantg wrote:

Bunuel wrote:

morya003 wrote:

If S is the infinite sequence: S1=9, S2=99, S3=999, ..., SK = 10^K-1, ..., is every term in S divisible by the prime number p?

(1) p is greater than 2.

(2) At least one term in sequence S is divisible by p.

No, B is not correct. It's straight E: if p=3 then every term in S is divisible by p but if p=11 then some terms in S are divisible by p (for example 99 and 9999) and some are not (for example 9 and 999). Not sufficient.

Answer: E.

hope it's clear.

Hello Bunuel

I have a doubt here. Since we know after combining the 2 statements that the Prime number will NOT be 3 but any other Prime number that divides at least 1 number in the sequence. So now we know for SURE that EVERY TERM IS NOT Divisible by a particular Prime number( Which the Questions asks). 11 will also not divide all terms but few only.

SO should the Answer not be "C" ? Please correct me.

Thankyou

Actually question is asking , is every term in S divisible by the prime number p?

S1: p is greater than 2..Means wat? it means p cud b 3 ,5,7,11. If we say 3 then ans will be yes, Bt if we say 5 then we say no. Thats why Insufficient.

S2: at least one term is divisible by p. so ans wud b 3 or 11. 3 wud be divisible by every term of S, Bt 11 cud not be divisible by first term 9, and 999 etc.

Take both statement togather. still we cant give the ans, because p cud b 3 or 11. _________________

Bole So Nehal.. Sat Siri Akal.. Waheguru ji help me to get 700+ score !

I'm happy to help if you wanna know about Ross & UMich, but please do not come to me with your GMAT issues or questions. And please add a bit of humor to your questions or you'll bore me to death.

Re: If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

16 Jan 2016, 00:55

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: If S is the infinite sequence S1=9 S2=99 S3=999 SK=10^k-1 [#permalink]

Show Tags

20 Feb 2016, 23:28

The only prime that divides all terms in the sequence: 9, 99, 999,.. is 3. So the question is essentially asking: is p=3? (1) p can be any prime number greater than 2, hence not sufficient. (2) p can be 3 or 11, hence not sufficient. Both taken together, again insufficient to identify p as 3.

Answer: E

boomtangboy summarizes aptly that the question tends to prey on the mistake that the test taker will consider 3 as the only possible value from statement (2).

Part 2 of the GMAT: How I tackled the GMAT and improved a disappointing score Apologies for the month gap. I went on vacation and had to finish up a...

I’m a little delirious because I’m a little sleep deprived. But whatever. I have to write this post because... I’M IN! Funnily enough, I actually missed the acceptance phone...

So the last couple of weeks have seen a flurry of discussion in our MBA class Whatsapp group around Brexit, the referendum and currency exchange. Most of us believed...

This highly influential bestseller was first published over 25 years ago. I had wanted to read this book for a long time and I finally got around to it...