If the mean of set S does not exceed mean of any subset of : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 22 Jan 2017, 05:17

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If the mean of set S does not exceed mean of any subset of

Author Message
TAGS:

### Hide Tags

Intern
Joined: 20 Aug 2010
Posts: 6
Schools: Duke,Darden,Chicago University
Followers: 0

Kudos [?]: 6 [0], given: 1

If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

15 Jan 2012, 07:28
6
This post was
BOOKMARKED
00:00

Difficulty:

65% (hard)

Question Stats:

40% (01:49) correct 60% (01:05) wrong based on 312 sessions

### HideShow timer Statistics

If the mean of set S does not exceed mean of any subset of set S, which of the following must be true about set S ?

I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S

A. None of the three qualities is necessary
B. II only
C. III only
D. II and III only
E. I, II, and III

[Reveal] Spoiler:
I: Not True: If Set contains only One element, then Set S won't have any SS.
II: True: When all the elements are equal, then mean of S=mean of any SS.
III: Not True: Consider Consecutive No in Set S.Mean of S will always be greater than the smallest No. of the Consecutive series of Set S, and hence Mean of S becomes greater then Subset of S.

Why the answer is Not B??
[Reveal] Spoiler: OA
Math Expert
Joined: 02 Sep 2009
Posts: 36596
Followers: 7093

Kudos [?]: 93426 [0], given: 10563

Re: GMat Club Tests: M16 Q23 [#permalink]

### Show Tags

15 Jan 2012, 07:40
Expert's post
1
This post was
BOOKMARKED
If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S?

I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S

A. none of the three qualities is necessary
B. II only
C. III only
D. II and III only
E. I, II, and III

"The mean of set S does not exceed mean of any subset of set S" --> set S can be:
A. $$S=\{x\}$$ - S contains only one element (eg {7});
B. $$S=\{x, x, ...\}$$ - S contains more than one element and all elements are equal (eg{7,7,7,7}).

Why is that? Because if set S contains two (or more) different elements, then we can always consider the subset with smallest number and the mean of this subset (mean of subset=smallest number) will be less than mean of entire set (mean of full set>smallest number).

Example: S={3, 5} --> mean of S=4. Pick subset with smallest number s'={3} --> mean of s'=3 --> 3<4.

Now let's consider the statements:

I. Set S contains only one element - not always true, we can have scenario B too ($$S=\{x, x, ...\}$$);

II. All elements in set S are equal - true for both A and B scenarios, hence always true;

III. The median of set S equals the mean of set S - - true for both A and B scenarios, hence always true.

So statements II and III are always true.

Also discussed here: ps-challenge-93565.html
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 36596
Followers: 7093

Kudos [?]: 93426 [0], given: 10563

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

03 Jun 2013, 02:08
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE
_________________
Director
Joined: 03 Aug 2012
Posts: 916
Concentration: General Management, General Management
GMAT 1: 630 Q47 V29
GMAT 2: 680 Q50 V32
GPA: 3.7
WE: Information Technology (Investment Banking)
Followers: 23

Kudos [?]: 695 [0], given: 322

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

30 Sep 2013, 10:17
Hi Bunuel,

I am still unable to get the solution.

When we can have an empty set {0} as a subset of each set, in that case we would have a average as 0 and thus consider the below example.

You have a set : {1,1,1}

One possible subset : {0}

Average of the set : 1

Average of subset:0

So still it exceeds the average of subset .

Rgds,
TGC!
_________________

Rgds,
TGC!
_____________________________________________________________________
I Assisted You => KUDOS Please
_____________________________________________________________________________

Math Expert
Joined: 02 Sep 2009
Posts: 36596
Followers: 7093

Kudos [?]: 93426 [1] , given: 10563

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

01 Oct 2013, 00:59
1
KUDOS
Expert's post
TGC wrote:
Hi Bunuel,

I am still unable to get the solution.

When we can have an empty set {0} as a subset of each set, in that case we would have a average as 0 and thus consider the below example.

You have a set : {1,1,1}

One possible subset : {0}

Average of the set : 1

Average of subset:0

So still it exceeds the average of subset .

Rgds,
TGC!

An empty set has no mean or the median.
_________________
Intern
Joined: 21 Sep 2013
Posts: 30
Location: United States
Concentration: Finance, General Management
GMAT Date: 10-25-2013
GPA: 3
WE: Operations (Mutual Funds and Brokerage)
Followers: 0

Kudos [?]: 23 [0], given: 82

Re: GMat Club Tests: M16 Q23 [#permalink]

### Show Tags

17 Oct 2013, 00:53
Bunuel wrote:
If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S?

I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S

A. none of the three qualities is necessary
B. II only
C. III only
D. II and III only
E. I, II, and III

"The mean of set S does not exceed mean of any subset of set S" --> set S can be:
A. $$S=\{x\}$$ - S contains only one element (eg {7});
B. $$S=\{x, x, ...\}$$ - S contains more than one element and all elements are equal (eg{7,7,7,7}).

Why is that? Because if set S contains two (or more) different elements, then we can always consider the subset with smallest number and the mean of this subset (mean of subset=smallest number) will be less than mean of entire set (mean of full set>smallest number).

Example: S={3, 5} --> mean of S=4. Pick subset with smallest number s'={3} --> mean of s'=3 --> 3<4.

Now let's consider the statements:

I. Set S contains only one element - not always true, we can have scenario B too ($$S=\{x, x, ...\}$$);

II. All elements in set S are equal - true for both A and B scenarios, hence always true;

III. The median of set S equals the mean of set S - - true for both A and B scenarios, hence always true.

So statements II and III are always true.

Also discussed here: ps-challenge-93565.html

hi bunuel , little confused here ..
Please explain me where am i going wrong.

I took the elements of set S={1,2,3,4)
And the subset elemets as ={2,3,4)

however this does not meet the second situation requirement. i.e. ( all elemets in set s are equal)
Math Expert
Joined: 02 Sep 2009
Posts: 36596
Followers: 7093

Kudos [?]: 93426 [0], given: 10563

Re: GMat Club Tests: M16 Q23 [#permalink]

### Show Tags

17 Oct 2013, 02:05
Yash12345 wrote:
Bunuel wrote:
If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S?

I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S

A. none of the three qualities is necessary
B. II only
C. III only
D. II and III only
E. I, II, and III

"The mean of set S does not exceed mean of any subset of set S" --> set S can be:
A. $$S=\{x\}$$ - S contains only one element (eg {7});
B. $$S=\{x, x, ...\}$$ - S contains more than one element and all elements are equal (eg{7,7,7,7}).

Why is that? Because if set S contains two (or more) different elements, then we can always consider the subset with smallest number and the mean of this subset (mean of subset=smallest number) will be less than mean of entire set (mean of full set>smallest number).

Example: S={3, 5} --> mean of S=4. Pick subset with smallest number s'={3} --> mean of s'=3 --> 3<4.

Now let's consider the statements:

I. Set S contains only one element - not always true, we can have scenario B too ($$S=\{x, x, ...\}$$);

II. All elements in set S are equal - true for both A and B scenarios, hence always true;

III. The median of set S equals the mean of set S - - true for both A and B scenarios, hence always true.

So statements II and III are always true.

Also discussed here: ps-challenge-93565.html

hi bunuel , little confused here ..
Please explain me where am i going wrong.

I took the elements of set S={1,2,3,4)
And the subset elemets as ={2,3,4)

however this does not meet the second situation requirement. i.e. ( all elemets in set s are equal)

We are given that "the mean of set S does not exceed mean of ANY subset of set S".

Now, notice that S cannot be {1, 2, 3, 4), because it has subsets with the mean smaller than the mean of {1, 2, 3, 4):

Mean of S = 10/4 = 2.5. Mean of {1}, which is a subset of S, is 1 --> 2.5 > 1.

Does this make sense?
_________________
Intern
Joined: 21 Sep 2013
Posts: 30
Location: United States
Concentration: Finance, General Management
GMAT Date: 10-25-2013
GPA: 3
WE: Operations (Mutual Funds and Brokerage)
Followers: 0

Kudos [?]: 23 [0], given: 82

Re: GMat Club Tests: M16 Q23 [#permalink]

### Show Tags

17 Oct 2013, 02:22
Bunuel wrote:
Yash12345 wrote:
Bunuel wrote:
If the mean of set S does not exceed mean of any subset of set S , which of the following must be true about set S?

I. Set S contains only one element
II. All elements in set S are equal
III. The median of set S equals the mean of set S

A. none of the three qualities is necessary
B. II only
C. III only
D. II and III only
E. I, II, and III

"The mean of set S does not exceed mean of any subset of set S" --> set S can be:
A. $$S=\{x\}$$ - S contains only one element (e
B. $$S=\{x, x, ...\}$$ - S contains more than one element and all elements are equal (eg{7,7,7,7}).

Why is that? Because if set S contains two (or more) different elements, then we can always consider the subset with smallest number and the mean of this subset (mean of subset=smallest number) will be less than mean of entire set (mean of full set>smallest number).

Example: S={3, 5} --> mean of S=4. Pick subset with smallest number s'={3} --> mean of s'=3 --> 3<4.

Now let's consider the statements:

I. Set S contains only one element - not always true, we can have scenario B too ($$S=\{x, x, ...\}$$);

II. All elements in set S are equal - true for both A and B scenarios, hence always true;

III. The median of set S equals the mean of set S - - true for both A and B scenarios, hence always true.

So statements II and III are always true.

Also discussed here: ps-challenge-93565.html

hi bunuel , little confused here ..
Please explain me where am i going wrong.

I took the elements of set S={1,2,3,4)
And the subset elemets as ={2,3,4)

however this does not meet the second situation requirement. i.e. ( all elemets in set s are equal)

We are given that "the mean of set S does not exceed mean of ANY subset of set S".

Now, notice that S cannot be {1, 2, 3, 4), because it has subsets with the mean smaller than the mean of {1, 2, 3, 4):

Mean of S = 10/4 = 2.5. Mean of {1}, which is a subset of S, is 1 --> 2.5 > 1.

Does this make sense?

Yes bunuel my doubt is solved . Thus it is compulsory that all the elements of set s are equal.

thank you.
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13497
Followers: 577

Kudos [?]: 163 [0], given: 0

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

23 Dec 2014, 10:26
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Senior Manager
Status: Math is psycho-logical
Joined: 07 Apr 2014
Posts: 443
Location: Netherlands
GMAT Date: 02-11-2015
WE: Psychology and Counseling (Other)
Followers: 2

Kudos [?]: 109 [0], given: 169

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

25 Dec 2014, 08:03
I did it in a more practical way, like this:

Lets say S is {5,6,7,8,9} | i used consecutive integerns to make my life a bit easier
and s is {6,7,8} or {5,6,7}

Then, taking the options one by one:
I: Obviously, we could have more than one elements and still have the same mean. NO
II: We can see that for the first s this is wrong (same mean but different numbers). But for the second s this is true (different mean and different numbers). So, we can say that they should all be equal.
III: This seems to be true too, as if we choose an s, the mean of which is 7 or less than 7, then for S, the mean equals the median.

Perhaps it makes absolutely no sense and could be random, but it led me to the correct answer in about half a minute...
Joined: 20 Jul 2015
Posts: 99
Location: India
Concentration: Marketing, General Management
GMAT 1: 720 Q49 V40
GMAT 2: 720 Q50 V38
GMAT 3: 760 Q50 V42
GPA: 3.8
WE: Engineering (Non-Profit and Government)
Followers: 6

Kudos [?]: 9 [0], given: 11

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

25 Nov 2015, 11:00
I dont agree.

Consider the set S={0,1}, the mean is 1/2 which is less than all the subsets of S.
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13497
Followers: 577

Kudos [?]: 163 [0], given: 0

Re: If the mean of set S does not exceed mean of any subset of [#permalink]

### Show Tags

14 Jan 2017, 03:14
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If the mean of set S does not exceed mean of any subset of   [#permalink] 14 Jan 2017, 03:14
Similar topics Replies Last post
Similar
Topics:
13 A certain set of numbers has an average (arithmetic mean) of 8 21 Oct 2013, 19:13
7 What is the minimum percentage increase in the mean of set X 12 26 Jan 2012, 11:32
14 If the mean of set S does not exceed mean of any subset of 44 01 May 2010, 23:12
1 The mean of set S does not exceed mean of any subset of set 5 23 May 2008, 01:27
4 The mean of set S does not exceed mean of any subset of set 9 31 Oct 2007, 15:22
Display posts from previous: Sort by