Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If vertices of a triangle have coordinates (-1,0), (4,0), [#permalink]

Show Tags

27 Nov 2009, 08:46

5

This post received KUDOS

20

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

42% (02:23) correct
58% (01:20) wrong based on 557 sessions

HideShow timer Statictics

If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

(1) A < 3 (2) The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

If vertices of a triangle have coordinates (1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

1. A < 3

2. The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

what if you have a 45-45-90 triangle and the hypotenuse if 5

If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

1. A < 3

2. The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

You are right. Since the point (0,a) must be in 0y-axis, the hypotenus must be 5, hence the other two sides must be 3 and 4. _________________

If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

1. A < 3

2. The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

First of all right triangle with hypotenuse 5, doesn't mean that we have (3, 4, 5) right triangle. If we are told that values of all sides are integers, then yes: the only integer solution for right triangle with hypotenuse 5 would be (3, 4, 5).

To check this: consider the right triangle with hypotenuse 5 inscribed in circle. We know that a right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

So ANY point on circumference of a circle with diameter \(5\) would make the right triangle with diameter. Not necessarily sides to be \(3\) and \(4\). For example we can have isosceles right triangle, which would be 45-45-90: and the sides would be \(\frac{5}{\sqrt{2}}\). OR if we have 30-60-90 triangle and hypotenuse is \(5\), sides would be \(2.5\) and \(2.5*\sqrt{3}\). Of course there could be many other combinations.

Back to the original question: If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15? (1) A < 3 --> two vertices are on the X-axis and the third vertex is on the Y-axis, below the point (0,3). The third vertex could be at (0,1) and the area would be less than 15 OR the third vertex could be at (0,-100) and the area would be more than 15. So not sufficient.

(2) The triangle is right. --> Obviously as the third vertex is on the Y-axis, the right angle must be at the third vertex. Which means the hypotenuse is on X-axis and equals to 5. Again if we consider the circle, the radius mus be 2.5 (half of the hypotenuse/diameter) and the third vertex must be one of two intersections of the circle with Y-axis. We'll get the two specific symmetric points for the third vertex, hence the area would be fixed and defined. Which means that it's possible to answer the question whether the area is more than 15, even not calculating actual value. Sufficient.

Answer: B.

If we want to know how the area could be calculated with the help of statement 2, here you go:

One of the approaches:

The equation of a circle is \((x - a)^2 + (y-b)^2 = r^2\), where \((a,b)\) is the center and \(r\) is the radius.

We know: \(r=2.5\), as the hypotenuse is 5. \(a=1.5\) and \(b=0\), as the center is on the X-axis, at the point \((1.5, 0)\), half the way between the (-1, 0) and (4, 0). We need to determine intersection of the circle with Y-axis, or the point \((0, y)\) for the circle.

So we'll have \((0-1.5)^2 + (y-0)^2 =2.5^2\)

\(y^2=4\) --> \(y=2\) and \(y=-2\). The third vertex is either at the point \((0, 2)\) OR \((0,-2)\). In any case \(Area=2*\frac{5}{2}=5\). _________________

Please tell me where I am going wrong. Calculated using the matrix formula to solve the area of the triangle. \(1/2 [-1 (1-A) + 4 (A-1) +0(1-1)] >15\) \(A>7\)

Option 1 says A< 3 Hence Statement A is sufficient.

Please tell me where I am going wrong. Calculated using the matrix formula to solve the area of the triangle. \(1/2 [-1 (1-A) + 4 (A-1) +0(1-1)] >15\) \(A>7\)

Option 1 says A< 3 Hence Statement A is sufficient.

Am I missing something here?

This is a valid approach if you are familiar with the formula which gives the area based on the coordinates of the three vertices of a triangle.

If the vetices of a triangle are: \(A(a_x, a_y)\), \(B(b_x, b_y)\) and \(C(c_x,c_y)\) then the area of ABC is:

So if we consider: \(A(-1,0)\), \(B(4,0)\), and \(C(0,A)\) then the area would be: \(area=|\frac{-1(0-A)+4(A-0)+0(0-0)}{2}|\) --> \(area=|\frac{5A}{2}|\).

Question: is \(area=|\frac{5A}{2}|>15\) --> is \(|A|>6\).

Statement (1) says A>3, which is not sufficient to say whether \(|A|>6\).

P.S. You made some errors in calculation and also didn't put the area formula in ||.

Please tell me where I am going wrong. Calculated using the matrix formula to solve the area of the triangle. \(1/2 [-1 (1-A) + 4 (A-1) +0(1-1)] >15\) \(A>7\)

Option 1 says A< 3 Hence Statement A is sufficient.

Am I missing something here?

This is a valid approach if you are familiar with the formula which gives the area based on the coordinates of the three vertices of a triangle.

If the vetices of a triangle are: \(A(a_x, a_y)\), \(B(b_x, b_y)\) and \(C(c_x,c_y)\) then the area of ABC is:

So if we consider: \(A(-1,0)\), \(B(4,0)\), and \(C(0,A)\) then the area would be: \(area=|\frac{-1(0-A)+4(A-0)+0(0-0)}{2}|\) --> \(area=|\frac{5A}{2}|\).

Question: is \(area=|\frac{5A}{2}|>15\) --> is \(|A|>6\).

Statement (1) says A>3, which is not sufficient to say whether \(|A|>6\).

P.S. You made some errors in calculation and also didn't put the area formula in ||.

Hope it helps.

\(area=|\frac{a_x(b_y-c_y)+b_x(c_y-a_y)+c_x(a_y-b_y)}{2}|\). like this formulation, tks

As in (1) , A<3 , which means A = -3 , -100 , -200 anything --> Not suffcient

From (2) We conclude that the triangle is rt. angled at (0,A)

We can set up the equation as (A-0)/(0-(-1)) * (A-0)/(0-4) = -1 as product of slopes of two perpendicular lines of a rt angled triangle is -1

A= +/- 2 which gives area of the rt angled traingle as 5 sq units < 15 sq units ---> sufficient

Hence Answer is B

Bunuel wrote:

gmat620 wrote:

If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

1. A < 3

2. The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

First of all right triangle with hypotenuse 5, doesn't mean that we have (3, 4, 5) right triangle. If we are told that values of all sides are integers, then yes: the only integer solution for right triangle with hypotenuse 5 would be (3, 4, 5).

To check this: consider the right triangle with hypotenuse 5 inscribed in circle. We know that a right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

So ANY point on circumference of a circle with diameter \(5\) would make the right triangle with diameter. Not necessarily sides to be \(3\) and \(4\). For example we can have isosceles right triangle, which would be 45-45-90: and the sides would be \(\frac{5}{\sqrt{2}}\). OR if we have 30-60-90 triangle and hypotenuse is \(5\), sides would be \(2.5\) and \(2.5*\sqrt{3}\). Of course there could be many other combinations.

Back to the original question: If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15? (1) A < 3 --> two vertices are on the X-axis and the third vertex is on the Y-axis, below the point (0,3). The third vertex could be at (0,1) and the area would be less than 15 OR the third vertex could be at (0,-100) and the area would be more than 15. So not sufficient.

(2) The triangle is right. --> Obviously as the third vertex is on the Y-axis, the right angle must be at the third vertex. Which means the hypotenuse is on X-axis and equals to 5. Again if we consider the circle, the radius mus be 2.5 (half of the hypotenuse/diameter) and the third vertex must be one of two intersections of the circle with Y-axis. We'll get the two specific symmetric points for the third vertex, hence the area would be fixed and defined. Which means that it's possible to answer the question whether the area is more than 15, even not calculating actual value. Sufficient.

Answer: B.

If we want to know how the area could be calculated with the help of statement 2, here you go:

One of the approaches:

The equation of a circle is \((x - a)^2 + (y-b)^2 = r^2\), where \((a,b)\) is the center and \(r\) is the radius.

We know: \(r=2.5\), as the hypotenuse is 5. \(a=1.5\) and \(b=0\), as the center is on the X-axis, at the point \((1.5, 0)\), half the way between the (-1, 0) and (4, 0). We need to determine intersection of the circle with Y-axis, or the point \((0, y)\) for the circle.

So we'll have \((0-1.5)^2 + (y-0)^2 =2.5^2\)

\(y^2=4\) --> \(y=2\) and \(y=-2\). The third vertex is either at the point \((0, 2)\) OR \((0,-2)\). In any case \(Area=2*\frac{5}{2}=5\).

As in (1) , A<3 , which means A = -3 , -100 , -200 anything --> Not suffcient

From (2) We conclude that the triangle is rt. angled at (0,A)

We can set up the equation as (A-0)/(0-(-1)) * (A-0)/(0-4) = -1 as product of slopes of two perpendicular lines of a rt angled triangle is -1

A= +/- 2 which gives area of the rt angled traingle as 5 sq units < 15 sq units ---> sufficient

Hence Answer is B

i liked your method.... the bottom line seems to be from slope we can find coordinates of O,A hence find area and compare The value of A can be +ve or -ve ....doesnt matter as it is length and because of co-ordinates of 2 given points which are in x axis we can say that right angle is not between them so seems like this method works... thanks

the biggest take away...We'll get the two specific symmetric points for the third vertex, hence the area would be fixed and defined. Which means that it's possible to answer the question whether the area is more than 15, even not calculating actual value.

Dont calculate....its a yes or no question. Fixed point means we can calculate area some how.

from the given info. the base of the triangle is 5 i.e the disantce between -1 and 4.

for the area to be greater than 15 , 0.5*5*hiegt > 15 ==> hiegt > 6

note that the third vertex(0,A) decides the hieght of the triangle.

Stmnt1. A < 3 ==> A could be 2 (hieght = 2 and answer to the question is NO) or -10 (hieght = 10 and the anser to the qtn is YES)...hence NOT suff.

stmnt2: the triangle is right

VERY IMPORTANT, USEFUL AND GMAT'S FAVORITE property: the angle on the semi circle is 90, means, if two vertices of the triangle are on the extreme sides of the diameter and the third is on the semi circle, then at the third vertex the angle is 90.

Using the above property and the stmnt 2 , we can say that the third verthex (0,A) is on a semi circle having the diameter connected between (-1,0) and (4,0) ==> radius of the circle is 5 (distance b/w -1 and 4) / 2 = 2.5

hence the trianlge (right angle) in this semicircle would have the maximum area = 0.5 * 5 * 2.5 (height=radius) = 6.25 that is < 15 ==> the max area is < 15 ==> any other possible right angle triangle areas would be < 15 ==> answer to the question is "NO".

ok, this is simple. the area of our triangle is (!A!*5)/2 where 5 is a hypotenuse of the triangle (!-1-4! = 5) first option is not sufficient, cuz !A! (absolute value of A) can be any number. 1, 10, 100000000 etc second option is sufficient. in any right angle triangle, the square of the altitude to the hypotenuse is equal to the product of two sectors it creates on hypotenuse. in our case one sector is 1 and the other is 4. so A*A=1*4, thus A=2. so the area is (2*5)/2. sorry my math english is not that good. tried my best to explain. Ans: B

If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

1. A < 3

2. The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

First, your question - No, you cannot assume that the sides are 3 and 4 if you have 5 as hypotenuse. lagomez is right. What if it is 45-45-90 triangle? The sides will not be 3 and 4. But in this question, you have something more. You know the line on which your third vertex of the triangle will fall.

Attachment:

Ques2.jpg [ 9.29 KiB | Viewed 9539 times ]

There will be only 1 such right triangle so you will be able to say whether the area is greater than 15 or not. You don't need to find the triangle but you know this statement alone is sufficient. _________________

If vertices of a triangle have coordinates (-1,0), (4,0), and (0,A) , is the area of the triangle greater than 15 ?

1. A < 3

2. The triangle is right

Hello friends, I solved this problem but I have a doubt. if we know that triangle is right triangle and hypotenus is 5, can we always safely assume other two sides as 3, 4 without knowing whether other sides are integer or not. Please help me i have my test 4 days away. Thanks.

First, your question - No, you cannot assume that the sides are 3 and 4 if you have 5 as hypotenuse. lagomez is right. What if it is 45-45-90 triangle? The sides will not be 3 and 4. But in this question, you have something more. You know the line on which your third vertex of the triangle will fall.

Attachment:

Ques2.jpg

There will be only 1 such right triangle so you will be able to say whether the area is greater than 15 or not. You don't need to find the triangle but you know this statement alone is sufficient.

Little correction here: actually there will be 2 such right triangles, the second one will be the mirror image of the first (urgent-help-required-87344.html#p656628). _________________

Post your Blog on GMATClub We would like to invite all applicants who are applying to BSchools this year and are documenting their application experiences on their blogs to...

Since the value of the NZ Dollar is much lower than the Pound, foreign currency exchange rates and how to pay MBA tuition fees are obviously of much concern...